Fault-Tolerate Quantum Private Comparison Based on GHZ States and ECC

There are some quantum private comparison (QPC) schemes proposed previously. In this paper we study these QPC protocols in non-ideal scenario and find that they are not secure there. For resolving the problem, we propose a QPC scheme which could be performed in practical scenario. By the use of Greenberger-Horne-Zeilinger (GHZ) states and error-correcting code (ECC), the scheme has the capability of fault-tolerate.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  Wenjie Liu,et al.  Efficient quantum secure direct communication with authentication , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[3]  Wenjie Liu,et al.  Selection of unitary operations in quantum secret sharing without entanglement , 2011, Science China Information Sciences.

[4]  Jian-Wei Pan,et al.  Experimental fault-tolerant quantum cryptography in a decoherence-free subspace , 2005, quant-ph/0508069.

[5]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[6]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[7]  He-Shan Song,et al.  Teleportation of a 3-dimensional GHZ State , 2012 .

[8]  Le Phuc Thinh,et al.  Security of distributed-phase-reference quantum key distribution. , 2012, Physical review letters.

[9]  Wen Liu,et al.  Quantum Private Comparison Based on GHZ Entangled States , 2012 .

[10]  Lei Lu,et al.  A Quantum Secure Direct Communication with Authentication , 2009 .

[11]  Tzonelih Hwang,et al.  New quantum private comparison protocol using EPR pairs , 2011, Quantum Information Processing.

[12]  Wenjie Liu,et al.  Secure Quantum Private Comparison of Equality Based on Asymmetric W State , 2013, 1312.5577.

[13]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[14]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[15]  Qiaoyan Wen,et al.  Quantum secure direct communication with χ -type entangled states , 2008 .

[16]  Su-Juan Qin,et al.  Improved Secure Multiparty Computation with a Dishonest Majority via Quantum Means , 2012, International Journal of Theoretical Physics.

[17]  Tzonelih Hwang,et al.  Dense coding using cluster states and its application on deterministic secure quantum communication , 2011 .

[18]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[19]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[20]  Ying Sun,et al.  Information leak in Liu et al.’s quantum private comparison and a new protocol , 2012, The European Physical Journal D.

[21]  Zhihao Liu,et al.  Improvement on "an efficient protocol for the quantum private comparison of equality with W state" , 2014 .

[22]  Wen Liu,et al.  A Protocol for the Quantum Private Comparison of Equality with χ-Type State , 2012 .

[23]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[24]  Chun-Wei Yang,et al.  Quantum private comparison of equality protocol without a third party , 2014, Quantum Inf. Process..

[25]  Xiang-bin Wang Quantum error-rejection code with spontaneous parametric down-conversion (7 pages) , 2004 .

[26]  Xiang‐Bin Wang Quantum key distribution with two-qubit quantum codes. , 2003, Physical review letters.

[27]  Yixian Yang,et al.  An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement , 2010 .

[28]  Qiao-Yan Wen,et al.  Comment on "experimental demonstration of a quantum protocol for Byzantine agreement and liar detection". , 2008, Physical review letters.

[29]  Qiaoyan Wen,et al.  Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174] , 2007 .

[30]  刘文,et al.  Quantum Private Comparison Protocol Based on Bell Entangled States , 2012 .

[31]  Chen Hanwu,et al.  An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication , 2009 .

[32]  Huantong Geng,et al.  Same Initial States Attack in Yang et al.’s Quantum Private Comparison Protocol and the Improvement , 2013, 1312.5562.

[33]  Qiaoyan Wen,et al.  Robust variations of the Bennett-Brassard 1984 protocol against collective noise , 2009 .

[34]  D. Browne,et al.  Secure multiparty computation with a dishonest majority via quantum means , 2009, 0906.2297.

[35]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[36]  Qiaoyan Wen,et al.  An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement , 2009 .

[37]  Yi-min Liu,et al.  Many-Agent Controlled Teleportation of Multi-qubit Quantum Information via Quantum Entanglement Swapping , 2005 .

[38]  Wen Liu,et al.  An efficient protocol for the quantum private comparison of equality with W state , 2011 .

[39]  Chun-Wei Yang,et al.  Revisiting Deng et al.’s Multiparty Quantum Secret Sharing Protocol , 2011 .

[40]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[41]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[42]  Bin Gu,et al.  High-Capacity Three-Party Quantum Secret Sharing with Single Photons in Both the Polarization and the Spatial-Mode Degrees of Freedom , 2013 .

[43]  Nguyen Ba An Quantum exam , 2006 .

[44]  Qiaoyan Wen,et al.  Participant attack on a kind of MQSS schemes based on entanglement swapping , 2010 .

[45]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[46]  Qiaoyan Wen,et al.  QUANTUM CIRCUITS FOR PROBABILISTIC ENTANGLEMENT TELEPORTATION VIA A PARTIALLY ENTANGLED PAIR , 2007 .

[47]  Su-Juan Qin,et al.  Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state , 2010 .

[48]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[49]  Tzonelih Hwang,et al.  Intercept–resend attacks on Chen et al.'s quantum private comparison protocol and the improvements , 2011 .

[50]  Christian Kurtsiefer,et al.  Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. , 2007, Physical review letters.

[51]  D. Browne,et al.  Computational power of correlations. , 2008, Physical review letters.

[52]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[53]  Fei Gao,et al.  A simple participant attack on the brádler-dušek protocol , 2007, Quantum Inf. Comput..

[54]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[55]  Zhiwei Sun,et al.  Quantum Private Comparison Protocol Based on Cluster States , 2013 .

[56]  Fei Gao,et al.  Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping” , 2007 .

[57]  宋婷婷,et al.  Participant attack on quantum secret sharing based on entanglement swapping , 2009 .

[58]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[59]  Qiaoyan Wen,et al.  Cryptanalysis and improvement of multiparty quantum secret sharing schemes , 2008 .

[60]  Zheng Zhou,et al.  Arbitrated quantum signature with an untrusted arbitrator , 2011 .

[61]  Yong-Gang Tan,et al.  Practical decoy state quantum key distribution with finite resource , 2010 .

[62]  Qiaoyan Wen,et al.  Quantum Private Comparison Using Genuine Four-Particle Entangled States , 2012 .

[63]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[64]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[65]  Chia-Wei Tsai,et al.  Comment on “Quantum Key Distribution and Quantum Authentication Based on Entangled State” , 2011 .

[66]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[67]  Qiao-Yan Wen,et al.  Secure quantum private comparison , 2009 .

[68]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[69]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[70]  Chao Liu,et al.  Quantum Private Comparison: A Review , 2013, ArXiv.

[71]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[72]  Qiaoyan Wen,et al.  Security of a kind of quantum secret sharing with single photons , 2011, Quantum Inf. Comput..

[73]  Wei Yang,et al.  Efficient Symmetric Five-Party Quantum State Sharing of an Arbitrary m-Qubit State , 2011 .

[74]  Qiaoyan Wen,et al.  Comment on “Secure multiparty computation with a dishonest majority via quantum means” , 2011 .

[75]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[76]  Ivan Damgård,et al.  Scalable and Unconditionally Secure Multiparty Computation , 2007, CRYPTO.