A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C‐terminal domain of the VgrG spike protein for delivery

The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath‐like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero‐aggregative Escherichia coli Sci‐1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self‐protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C‐terminal extension domain of VgrG1, including a transthyretin‐like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C‐terminus of VgrG proteins.

[1]  J. Mekalanos,et al.  PAAR-repeat proteins sharpen and diversify the Type VI secretion system spike , 2013, Nature.

[2]  D. Goodlett,et al.  A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. , 2010, Cell host & microbe.

[3]  Jan Löwe,et al.  RF cloning: a restriction-free method for inserting target genes into plasmids. , 2006, Journal of biochemical and biophysical methods.

[4]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[5]  Marek Basler,et al.  Type VI secretion system: secretion by a contractile nanomachine , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  E. Cascales,et al.  Structure and regulation of the type VI secretion system. , 2012, Annual review of microbiology.

[7]  David Baker,et al.  Structure of the Type VI Secretion System Contractile Sheath , 2015, Cell.

[8]  Alexander V. Diemand,et al.  Remodelling of VipA/VipB tubules by ClpV‐mediated threading is crucial for type VI protein secretion , 2009, The EMBO journal.

[9]  Xiaoye Liang,et al.  Identification of divergent type VI secretion effectors using a conserved chaperone domain , 2015, Proceedings of the National Academy of Sciences.

[10]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[11]  H. Brown,et al.  Biochemical characterization of a Pseudomonas aeruginosa phospholipase D. , 2015, Biochemistry.

[12]  V. Braun,et al.  Periplasmic chaperone FkpA is essential for imported colicin M toxicity , 2008, Molecular microbiology.

[13]  F. O'Gara,et al.  Tle distribution and diversity in metagenomic datasets reveal niche specialization. , 2015, Environmental microbiology reports.

[14]  M. Halpern,et al.  Genetic Analysis of Digestive Physiology Using Fluorescent Phospholipid Reporters , 2001, Science.

[15]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[16]  U. Alon,et al.  A comprehensive library of fluorescent transcriptional reporters for Escherichia coli , 2006, Nature Methods.

[17]  A. Davidson,et al.  The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system , 2009, Proceedings of the National Academy of Sciences.

[18]  S. Coulthurst,et al.  Molecular weaponry: diverse effectors delivered by the Type VI secretion system , 2015, Cellular microbiology.

[19]  J. M. Sauder,et al.  Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin , 2009, Proceedings of the National Academy of Sciences.

[20]  D. Goodlett,et al.  An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells , 2015, Cell.

[21]  Xiaolong Liu,et al.  The structural basis of the Tle4-Tli4 complex reveals the self-protection mechanism of H2-T6SS in Pseudomonas aeruginosa. , 2014, Acta crystallographica. Section D, Biological crystallography.

[22]  G. Lambeau,et al.  Effects of the propeptide of group X secreted phospholipase A(2) on substrate specificity and interfacial activity on phospholipid monolayers. , 2013, Biochimie.

[23]  R. Lloubès,et al.  The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall , 2010, Molecular microbiology.

[24]  Andrew T. Revel,et al.  Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin , 2007, Proceedings of the National Academy of Sciences.

[25]  Paul A. Wiggins,et al.  Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors , 2013, Nature.

[26]  E. Cascales,et al.  The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization , 2015, PLoS genetics.

[27]  P. Leiman,et al.  Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. , 2014, Journal of biochemistry.

[28]  Jean-Michel Claverie,et al.  Phylogeny.fr: robust phylogenetic analysis for the non-specialist , 2008, Nucleic Acids Res..

[29]  A. Mogk,et al.  ClpV recycles VipA/VipB tubules and prevents non‐productive tubule formation to ensure efficient type VI protein secretion , 2013, Molecular microbiology.

[30]  M. Connelly,et al.  A novel fluorogenic substrate for the measurement of endothelial lipase activity , 2011, Journal of Lipid Research.

[31]  D. Ladant,et al.  A bacterial two-hybrid system based on a reconstituted signal transduction pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  L. Journet,et al.  The Type VI Secretion System in Escherichia coli and Related Species , 2016, EcoSal Plus.

[33]  Frédéric Boyer,et al.  Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? , 2009, BMC Genomics.

[34]  Dongqi Wang,et al.  Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. , 2014, Acta crystallographica. Section D, Biological crystallography.

[35]  P. Leiman,et al.  Structure and properties of the C-terminal b-helical domain of VgrG protein from Escherichia coli O 157 , 2014 .

[36]  Weiqi Wang,et al.  Structural Insights into the Pseudomonas aeruginosa Type VI Virulence Effector Tse1 Bacteriolysis and Self-protection Mechanisms* , 2012, The Journal of Biological Chemistry.

[37]  R. Verger,et al.  Surface behaviour of human pancreatic and gastric lipases , 1994 .

[38]  Christian Cambillau,et al.  Architecture and assembly of the Type VI secretion system. , 2014, Biochimica et biophysica acta.

[39]  J. Hénin,et al.  Type VI secretion and bacteriophage tail tubes share a common assembly pathway , 2014, EMBO reports.

[40]  S. B. Peterson,et al.  Type VI secretion system effectors: poisons with a purpose , 2014, Nature Reviews Microbiology.

[41]  E. Cascales,et al.  Imaging type VI secretion-mediated bacterial killing. , 2013, Cell reports.

[42]  G. Jensen,et al.  Type VI secretion requires a dynamic contractile phage tail-like structure , 2012, Nature.

[43]  J. Mekalanos,et al.  A view to a kill: the bacterial type VI secretion system. , 2014, Cell host & microbe.

[44]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Mekalanos,et al.  Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae , 2013, Proceedings of the National Academy of Sciences.

[46]  A. Meinhart,et al.  Antibacterial effector/immunity systems: it's just the tip of the iceberg. , 2014, Current opinion in microbiology.

[47]  R. Munson,et al.  Acinetobacter baumannii Utilizes a Type VI Secretion System for Bacterial Competition , 2013, PloS one.

[48]  G. Sciara,et al.  A Topological Model of the Baseplate of Lactococcal Phage Tuc2009* , 2008, Journal of Biological Chemistry.

[49]  J. Sha,et al.  A Type VI Secretion System Effector Protein, VgrG1, from Aeromonas hydrophila That Induces Host Cell Toxicity by ADP Ribosylation of Actin , 2009, Journal of bacteriology.

[50]  Q. Jin,et al.  A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. , 2014, Cell host & microbe.

[51]  C. Cambillau,et al.  Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli , 2014, PloS one.

[52]  R. Verger,et al.  Enzyme reactions in a membrane model. 1. A new technique to study enzyme reactions in monolayers. , 1973, Chemistry and physics of lipids.

[53]  E. Bouveret,et al.  The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. , 2012, Methods.

[54]  E. Cascales,et al.  The type VI secretion toolkit , 2008, EMBO reports.

[55]  D. Raoult,et al.  Crystal Structure of the VgrG1 Actin Cross-linking Domain of the Vibrio cholerae Type VI Secretion System , 2012, The Journal of Biological Chemistry.

[56]  S. Pukatzki,et al.  Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae , 2015, The EMBO journal.

[57]  W. Zückert Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. , 2014, Biochimica et biophysica acta.

[58]  Yifan Cheng,et al.  In vitro self-assembly of tailorable nanotubes from a simple protein building block , 2008, Proceedings of the National Academy of Sciences.

[59]  R. Lloubès,et al.  SciN Is an Outer Membrane Lipoprotein Required for Type VI Secretion in Enteroaggregative Escherichia coli , 2008, Journal of bacteriology.

[60]  M. Gavioli,et al.  An Epigenetic Switch Involving Overlapping Fur and DNA Methylation Optimizes Expression of a Type VI Secretion Gene Cluster , 2011, PLoS genetics.

[61]  Christian Cambillau,et al.  VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. , 2014, Trends in microbiology.

[62]  S. Coulthurst,et al.  Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein , 2015, Journal of bacteriology.

[63]  T. Gonen,et al.  Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. , 2013, Molecular cell.

[64]  Junqiang Hu,et al.  Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function. , 2012, The Biochemical journal.

[65]  A. Mogk,et al.  Tubules and donuts: a type VI secretion story , 2010, Molecular microbiology.

[66]  E. Santillana,et al.  The structure of VgrG1 from Pseudomonas aeruginosa, the needle tip of the bacterial type VI secretion system. , 2016, Acta crystallographica. Section D, Structural biology.

[67]  V. Barbe,et al.  Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor , 2014, BMC Biology.

[68]  S. Pukatzki,et al.  The Vibrio cholerae type VI secretion system displays antimicrobial properties , 2010, Proceedings of the National Academy of Sciences.

[69]  Chengping Lu,et al.  Two Functional Type VI Secretion Systems in Avian Pathogenic Escherichia coli Are Involved in Different Pathogenic Pathways , 2014, Infection and Immunity.

[70]  A. Filloux,et al.  The VgrG Proteins Are “à la Carte” Delivery Systems for Bacterial Type VI Effectors* , 2014, The Journal of Biological Chemistry.

[71]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[72]  E. Cascales,et al.  Promoter Swapping Unveils the Role of the Citrobacter rodentium CTS1 Type VI Secretion System in Interbacterial Competition , 2012, Applied and Environmental Microbiology.

[73]  W. Nelson,et al.  Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[74]  T. West,et al.  Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions , 2010, PLoS pathogens.

[75]  S. Coulthurst,et al.  The Type VI secretion system - a widespread and versatile cell targeting system. , 2013, Research in microbiology.

[76]  Katharina Trunk,et al.  The Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target Bacterial Competitors , 2011, Journal of bacteriology.

[77]  A. Desmyter,et al.  Biogenesis and structure of a type VI secretion membrane core complex , 2015, Nature.

[78]  D. Goodlett,et al.  Genetically distinct pathways guide effector export through the type VI secretion system , 2014, Molecular microbiology.