Material challenges for solar cells in the twenty-first century: directions in emerging technologies

Abstract Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

[1]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[2]  G. Konstantatos,et al.  Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals , 2016, Nature Photonics.

[3]  M. Bescond,et al.  Reflective Barrier Optimization in Ultrathin Single-Junction GaAs Solar Cell , 2015, IEEE Journal of Photovoltaics.

[4]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[5]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[6]  T. Russell,et al.  Multiscale active layer morphologies for organic photovoltaics through self-assembly of nanospheres. , 2014, Nano letters.

[7]  P. Lugli,et al.  Electroluminescence and photoluminescence characterization of multijunction solar cells , 2012, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[8]  C. Donolato A reciprocity theorem for charge collection , 1985 .

[9]  F. Giordano,et al.  Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells , 2016, Nature Communications.

[10]  S. Uchida,et al.  Indoline Dyes with Benzothiazole Unit for Dye-sensitized Solar Cells , 2016 .

[11]  S. Uchida,et al.  Tunneling‐Assisted Trapping as one of the Possible Mechanisms for the Origin of Hysteresis in Perovskite Solar Cells , 2017 .

[12]  Y. Nakano,et al.  Thickness-modulated InGaAs/GaAsP superlattice solar cells on vicinal substrates , 2015 .

[13]  On the Action of Light on Selenium , 1876, Nature.

[14]  Thomas Kirchartz,et al.  Electroluminescence analysis of high efficiency Cu(In,Ga)Se2 solar cells , 2007 .

[15]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[16]  Arvind Shah,et al.  Technological status of plasma-deposited thin-film silicon photovoltaics , 2013 .

[17]  Michael Woodhouse,et al.  Techno‐economic analysis of three different substrate removal and reuse strategies for III‐V solar cells , 2016 .

[18]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[19]  Yongfang Li,et al.  6.5% Efficiency of Polymer Solar Cells Based on poly(3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization , 2010, Advanced materials.

[20]  Keith W. J. Barnham,et al.  A new approach to high‐efficiency multi‐band‐gap solar cells , 1990 .

[21]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[22]  M. Konagai,et al.  InGaP//GaAs//c‐Si 3‐junction solar cells employing spectrum‐splitting system , 2016 .

[23]  Yang Yang,et al.  High-efficiency robust perovskite solar cells on ultrathin flexible substrates , 2016, Nature Communications.

[24]  M. Bescond,et al.  Quantum electronic transport in polarization-engineered GaN/InGaN/GaN tunnel junctions , 2017 .

[25]  Kenji Kakiage,et al.  Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. , 2015, Chemical communications.

[26]  Harrison Ka Hin Lee,et al.  Is organic photovoltaics promising for indoor applications , 2016 .

[27]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[28]  A. L. Bris Feasibility study of a hot carrier photovoltaic device , 2011 .

[29]  Y. Takeuchi,et al.  Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6% , 2015 .

[30]  A. Cornfeld,et al.  Experimental Results From Performance Improvement and Radiation Hardening of Inverted Metamorphic Multijunction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[31]  Rowan W. MacQueen,et al.  Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells , 2016 .

[32]  Paul C. Dastoor,et al.  Nano-domain behaviour in P3HT:PCBM nanoparticles, relating material properties to morphological changes , 2013 .

[33]  Bruno Ricco,et al.  Physics of resonant tunneling. The one-dimensional double-barrier case , 1984 .

[34]  Dirk Jordan,et al.  Compendium of photovoltaic degradation rates , 2016 .

[35]  H. Levard Phonon engineering for hot-carrier solar cells , 2015 .

[36]  J. Fréchet,et al.  Linear side chains in benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. , 2013, Journal of the American Chemical Society.

[37]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[38]  Zhengshan Yu,et al.  Selecting tandem partners for silicon solar cells , 2016, Nature Energy.

[39]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[40]  H. Ade,et al.  Efficient organic solar cells processed from hydrocarbon solvents , 2016, Nature Energy.

[41]  J. Eymery,et al.  Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires , 2016, ACS applied materials & interfaces.

[42]  T. Rödlmeier,et al.  Fabrication of polymer solar cells from organic nanoparticle dispersions by doctor blading or ink-jet printing , 2016 .

[43]  S. Uchida,et al.  Origin of the Hysteresis in I–V Curves for Planar Structure Perovskite Solar Cells Rationalized with a Surface Boundary-induced Capacitance Model , 2015 .

[44]  Graham E. Morse,et al.  Solar Trees: First Large‐Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules , 2015, Advanced science.

[45]  Gavin Conibeer,et al.  Selective energy contacts for hot carrier solar cells , 2008 .

[46]  H. Tian,et al.  Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells. , 2016, Journal of the American Chemical Society.

[47]  Jong-Kwon Lee,et al.  Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency , 2016 .

[48]  Yoshiaki Nakano,et al.  A quantum-well superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration , 2013 .

[49]  Yoshitaka Okada,et al.  Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell , 2015 .

[50]  U. Aeberhard,et al.  Microscopic nonequilibrium theory of quantum well solar cells , 2007, 0709.4131.

[51]  C. Brabec,et al.  Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability , 2016 .

[52]  D. Dunlavy,et al.  Dependence of hot carrier luminescence on barrier thickness in GaAs/AlGaAs superlattices and multiple quantum wells , 1990 .

[53]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[54]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[55]  Joel Jean,et al.  ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells , 2013, Advanced materials.

[56]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[57]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[58]  Gavin Conibeer,et al.  Slowing of carrier cooling in hot carrier solar cells , 2008 .

[59]  D. C. Law,et al.  Direct Semiconductor Bonded 5J Cell for Space and Terrestrial Applications , 2014, IEEE Journal of Photovoltaics.

[60]  O. Durand,et al.  Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures , 2015 .

[61]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[62]  M. Bouttemy,et al.  Advanced analysis tool for X-ray photoelectron spectroscopy profiling: Cleaning of perovskite SrTiO3 oxide surface using argon cluster ion source , 2016 .

[63]  P. Chiu,et al.  Bifacial Growth InGaP/GaAs/InGaAs Concentrator Solar Cells , 2012, IEEE Journal of Photovoltaics.

[64]  M. Yoshita,et al.  Characterizations of Radiation Damage in Multijunction Solar Cells Focused on Subcell Internal Luminescence Quantum Yields via Absolute Electroluminescence Measurements , 2015, IEEE Journal of Photovoltaics.

[65]  M. Bescond,et al.  On the local approximation of the electron–photon interaction self-energy , 2016 .

[66]  Katherine Smith,et al.  Demonstration of a hot‐carrier photovoltaic cell , 2014 .

[67]  A. Facchetti,et al.  Thermal Stabilisation of Polymer–Fullerene Bulk Heterojunction Morphology for Efficient Photovoltaic Solar Cells , 2014, Advanced materials.

[68]  Thomas Kirchartz,et al.  Internal voltages in GaInP∕GaInAs∕Ge multijunction solar cells determined by electroluminescence measurements , 2008 .

[69]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[70]  Myles A. Steiner,et al.  Enhanced external radiative efficiency for 20.8 efficient single-junction GaInP solar cells , 2013 .

[71]  M. Grätzel,et al.  Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals , 2017, Nature Communications.

[72]  M. Anantram,et al.  Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.

[73]  Anatole Julian,et al.  Third generation hot carrier solar cells: paths towards innovative energy contacts structures , 2016, SPIE OPTO.

[74]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[75]  Nicolas Cavassilas,et al.  Modeling of nanoscale solar cells: The Green's function formalism , 2014 .

[76]  Y. Galagan,et al.  Investigation of non-halogenated solvent mixtures for high throughput fabrication of polymer-fullerene solar cells , 2012 .

[77]  Soo-Hyun Kim,et al.  Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology , 2013 .

[78]  Vesselinka Petrova-Koch,et al.  High-efficient low-cost photovoltaics : recent developments , 2009 .

[79]  Richardson,et al.  Theoretical investigations of resonant tunneling in asymmetric multibarrier semiconductor heterostructures in an applied constant electric field. , 1994, Physical review. B, Condensed matter.

[80]  Masakazu Sugiyama,et al.  Minibands modeling in strain-balanced InGaAs/GaAs/GaAsP cells , 2017, OPTO.

[81]  Frank Dimroth,et al.  Subcell I-V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements , 2011 .

[82]  Jean-François Guillemoles,et al.  Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images , 2012, OPTO.

[83]  G. Peharz,et al.  Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency , 2011 .

[84]  Edward H Sargent,et al.  Charge-extraction strategies for colloidal quantum dot photovoltaics. , 2014, Nature materials.

[85]  Jean-François Guillemoles,et al.  Quantitative luminescence mapping of Cu(In, Ga)Se2 thin‐film solar cells , 2015 .

[86]  Thorsten Trupke,et al.  Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging , 2007 .

[87]  S. Patil,et al.  Semiconducting Polymer Nanospheres in Aqueous Dispersion Prepared by a Miniemulsion Process , 2002 .

[88]  Rembrandt H.E.M. Koppelaar,et al.  Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization , 2017 .

[89]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[90]  A. Ichiki,et al.  Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells , 2015 .

[91]  Robert A. Taylor,et al.  Time-Resolved Photoluminescence of Two-Dimensional Hot Carriers in GaAs-AlGaAs Heterostructures , 1984 .

[92]  L. Lombez,et al.  On the origin of the spatial inhomogeneity of photoluminescence in thin-film CIGS solar devices , 2016 .

[93]  Antonio Facchetti,et al.  Polymer donor–polymer acceptor (all-polymer) solar cells , 2013 .

[94]  Defne Apul,et al.  Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis , 2015 .

[95]  H. Yuen,et al.  High-efficiency multijunction solar cells employing dilute nitrides , 2012 .

[96]  James H. Bannock,et al.  Burn‐in Free Nonfullerene‐Based Organic Solar Cells , 2017 .

[97]  D. Munteanu,et al.  Influence of band-structure on electron ballistic transport in silicon nanowire MOSFET's: an atomistic study , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[98]  Tsutomu Miyasaka,et al.  Organic-Inorganic Halide Perovskite Photovoltaics , 2016 .

[99]  Xiaojing Zhou,et al.  The role of miscibility in polymer:fullerene nanoparticulate organic photovoltaic devices , 2013 .

[100]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[101]  Ziv Hameiri,et al.  Photoluminescence and electroluminescence imaging of perovskite solar cells , 2015 .

[102]  Jean-François Guillemoles,et al.  Hot carrier solar cells: Achievable efficiency accounting for heat losses in the absorber and through contacts , 2010 .

[103]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[104]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[105]  Jinsong Huang,et al.  Air‐Stable, Efficient Mixed‐Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer , 2016 .

[106]  C. Donolato,et al.  Reconstruction of the charge collection probability in a solar cell from internal quantum efficiency measurements , 2001 .

[107]  Y. Okada,et al.  Fabrication of resonant tunneling structures for selective energy contact of hot carrier solar cell based on III–V semiconductors , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[108]  F. P. García de Arquer,et al.  Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling. , 2015, Nano letters.

[109]  Yijie Huo,et al.  Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% , 2016, Nature Communications.

[110]  Timothy M. Burke,et al.  Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity , 2014 .

[111]  G. H. Bauer,et al.  Subwavelength inhomogeneities in Cu(In,Ga)Se2 thin films revealed by near‐field scanning optical microscopy , 2009 .

[112]  Extraction of features from 2-d laterally sub-micron resolved photoluminescence in Cu(In,Ga)Se2 absorbers by Fourier transforms and Minkowski-operations , 2006 .

[113]  T. Fuyuki,et al.  Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence , 2005 .

[114]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[115]  Leathen Shi,et al.  Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics , 2013, Nature Communications.

[116]  T. Trupke,et al.  Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios , 2011 .

[117]  Alexander Colsmann,et al.  Eco‐Friendly Fabrication of 4% Efficient Organic Solar Cells from Surfactant‐Free P3HT:ICBA Nanoparticle Dispersions , 2014, Advanced materials.

[118]  M. Green,et al.  Spin-coating free fabrication for highly efficient perovskite solar cells , 2017 .

[119]  Steven Van Passel,et al.  Life cycle analyses of organic photovoltaics: a review , 2013 .

[120]  Aram Amassian,et al.  Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. , 2017, Nature materials.

[121]  U. Rau,et al.  Note on the interpretation of electroluminescence images using their spectral information , 2008 .

[122]  W. Fichtner,et al.  Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .

[123]  S. Uchida,et al.  Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells , 2015 .

[124]  A. Salleo,et al.  The Mechanism of Burn‐in Loss in a High Efficiency Polymer Solar Cell , 2012, Advanced materials.

[125]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[126]  L. Lombez,et al.  Two carrier temperatures non-equilibrium generalized Planck law for semiconductors , 2016 .

[127]  Frederik C. Krebs,et al.  A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions , 2011 .

[128]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[129]  Andrew J Pearson,et al.  Critical light instability in CB/DIO processed PBDTTT-EFT:PC71BM organic photovoltaic devices , 2016 .

[130]  G. H. Bauer,et al.  Lateral features of Cu(In0.7Ga0.3)Se2-heterodiodes in the μm-scale by confocal luminescence and focused light beam induced currents , 2007 .

[131]  N. P. Hylton,et al.  InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells , 2014 .

[132]  F. Dimroth,et al.  Temperature‐dependent electroluminescence and voltages of multi‐junction solar cells , 2014 .

[133]  M. Woodhouse,et al.  Manufacturing Cost Analysis Relevant to Single-and Dual-Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs Grown on Czochralski Silicon (Presentation) , 2014 .

[134]  A. Etcheberry,et al.  Enhanced Depth Profiling of Perovskite Oxide: Low Defect Levels Induced in SrTiO3 by Argon Cluster Sputtering , 2016 .

[135]  C. B. Nielsen,et al.  A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. , 2015, Journal of the American Chemical Society.

[136]  Martin A. Green,et al.  From junction to terminal: Extended reciprocity relations in solar cell operation , 2012 .

[137]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[138]  M. Green The path to 25% silicon solar cell efficiency: History of silicon cell evolution , 2009 .

[139]  Gerald Siefer,et al.  Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight , 2009 .

[140]  Levi,et al.  Hot-carrier cooling in GaAs: Quantum wells versus bulk. , 1993, Physical review. B, Condensed matter.

[141]  Ronn Andriessen,et al.  TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices--the ISOS-3 inter-laboratory collaboration. , 2012, Physical chemistry chemical physics : PCCP.

[142]  B. Cabane,et al.  Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[143]  Uwe Rau,et al.  Photocurrent collection efficiency mapping of a silicon solar cell by a differential luminescence imaging technique , 2014 .

[144]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[145]  Uwe Rau,et al.  Imaging photocurrent collection losses in solar cells , 2016 .

[146]  S. Zakeeruddin,et al.  Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. , 2014, Angewandte Chemie.

[147]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[148]  Masakazu Sugiyama,et al.  Hot Carriers in Quantum Wells for Photovoltaic Efficiency Enhancement , 2014, IEEE Journal of Photovoltaics.

[149]  Yoshiaki Nakano,et al.  100‐period, 1.23‐eV bandgap InGaAs/GaAsP quantum wells for high‐efficiency GaAs solar cells: toward current‐matched Ge‐based tandem cells , 2014 .

[150]  200nm-thick GaAs solar cells with a nanostructured silver mirror , 2016, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC).

[151]  A. Colsmann,et al.  Highly Efficient, Mechanically Flexible, Semi‐Transparent Organic Solar Cells Doctor Bladed from Non‐Halogenated Solvents , 2016 .

[152]  Martin A. Green,et al.  GENERALIZED RELATIONSHIP BETWEEN DARK CARRIER DISTRIBUTION AND PHOTOCARRIER COLLECTION IN SOLAR CELLS , 1997 .

[153]  Yoshihiko Kanemitsu,et al.  Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements , 2015, Scientific Reports.

[154]  B. Rand,et al.  Light‐Induced Degradation of Polymer:Fullerene Photovoltaic Devices: An Intrinsic or Material‐Dependent Failure Mechanism? , 2014 .

[155]  F. Dimroth,et al.  Monolithic Two-Terminal III–V//Si Triple-Junction Solar Cells With 30.2% Efficiency Under 1-Sun AM1.5g , 2017, IEEE Journal of Photovoltaics.

[156]  J. Luther,et al.  Observation of a hot-phonon bottleneck in lead-iodide perovskites , 2015, Nature Photonics.

[157]  Nicolas Cavassilas,et al.  Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells , 2014 .

[158]  Sayan Das,et al.  State of Art of Solar Photovoltaic Technology , 2013 .

[159]  Thomas Kietzke,et al.  Novel approaches to polymer blends based on polymer nanoparticles , 2003, Nature materials.

[160]  M. Grätzel,et al.  Hole-Transport Materials for Perovskite Solar Cells. , 2016, Angewandte Chemie.

[161]  M. Topič,et al.  Electroluminescence as a spatial characterisation technique for dye‐sensitised solar cells , 2013 .

[162]  A. Barlow,et al.  Observed damage during Argon gas cluster depth profiles of compound semiconductors , 2014 .

[163]  Mats Andersson,et al.  Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics , 2016 .

[164]  F. Giordano,et al.  Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells , 2015, Nature Communications.

[165]  Jianqi Zhang,et al.  All‐Polymer Solar Cells Based on Absorption‐Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27% , 2016, Advanced materials.

[166]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[167]  Hans-Werner Schock,et al.  Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices , 2011 .

[168]  J. Luther,et al.  Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction. , 2017, Nano letters.

[169]  Daniel Lincot,et al.  Measuring sheet resistance of CIGS solar cell's window layer by spatially resolved electroluminescence imaging , 2010, 1012.1693.

[170]  T. Markvart,et al.  Relationship between dark carrier distribution and photogenerated carrier collection in solar cells , 1996 .

[171]  E. Yablonovitch Statistical ray optics , 1982 .

[172]  E. Martinez,et al.  Scanning Auger microscopy for high lateral and depth elemental sensitivity , 2013 .

[173]  A. Bauknecht,et al.  Excitonic Photoluminescence from CuGaSe2 Single Crystals and Epitaxial Layers: Temperature Dependence of the Band Gap Energy , 2000 .

[174]  D. C. Law,et al.  Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells , 2009 .

[175]  J. Shah Hot electrons and phonons under high intensity photoexcitation of semiconductors , 1978 .

[176]  M. Green,et al.  Energy conversion approaches and materials for high-efficiency photovoltaics. , 2016, Nature materials.

[177]  Timothy M. Burke,et al.  Disorder‐Induced Open‐Circuit Voltage Losses in Organic Solar Cells During Photoinduced Burn‐In , 2015 .

[178]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[179]  J. Hartmann,et al.  Investigation of SiGe/Si heterostructures using state-of-the-art Auger Nanoprobes , 2012 .

[180]  M. Freitag,et al.  11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials , 2017, Nature Communications.

[181]  A. Lemaître,et al.  Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers , 2014 .

[182]  Xiaofan Deng,et al.  Overcoming the challenges of large-area high-efficiency perovskite solar cells , 2017 .

[183]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[184]  T. Motohiro,et al.  A hot-carrier solar cell with optical energy selective contacts , 2011 .

[185]  L. Lombez,et al.  Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[186]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[187]  G. J. Bauhuis,et al.  Influence of radius of curvature on the lateral etch rate of the weight induced epitaxial lift-off process , 2002 .

[188]  Johnson Wong,et al.  Differential electroluminescence imaging and the current transport efficiency of silicon wafer solar cells , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[189]  XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide , 2017 .

[190]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[191]  Yun Zhang,et al.  Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. , 2017, Journal of the American Chemical Society.

[192]  undefined Manoël Rekinger,et al.  Global Market Outlook for Solar Power 2015-2019 , 2014 .

[193]  Recent progress in organic sensitizers for dye-sensitized solar cells , 2015 .

[194]  A. Nozik,et al.  Multiexciton generation by a single photon in nanocrystals. , 2006, Nano letters.

[195]  M. Grätzel,et al.  Corrigendum: Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals , 2017, Nature Communications.

[196]  B. Feuerbacher,et al.  Verification of a generalised Planck law by investigation of the emission from GaAs luminescent diodes , 1990 .

[197]  Yoshiaki Nakano,et al.  Absorption threshold extended to 1.15 eV using InGaAs/GaAsP quantum wells for over‐50%‐efficient lattice‐matched quad‐junction solar cells , 2016 .

[198]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[199]  C. Olivier,et al.  Tuning visible-light absorption properties of Ru–diacetylide complexes: simple access to colorful efficient dyes for DSSCs , 2015 .

[200]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .

[201]  Roland Hany,et al.  Why perovskite solar cells with high efficiency show small IV-curve hysteresis , 2017 .

[202]  Ricardo M. Couto,et al.  Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly(3-hexylthiophene) nanoparticles for OFET devices. , 2015, Chemical communications.

[203]  Yanhong Luo,et al.  Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects , 2017 .

[204]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[205]  Bin Fan,et al.  Large area perovskite solar cell module , 2017 .

[206]  Etienne Goovaerts,et al.  Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells , 2008 .

[207]  M. Scharber On the Efficiency Limit of Conjugated Polymer:Fullerene‐Based Bulk Heterojunction Solar Cells , 2016, Advanced materials.

[208]  T. D. Harris,et al.  Surface derivatization and isolation of semiconductor cluster molecules , 1988 .

[209]  A. Othonos Probing ultrafast carrier and phonon dynamics in semiconductors , 1998 .

[210]  J. Werner,et al.  Comparative study of electroluminescence from Cu(In,Ga)Se2 and Si solar cells , 2007 .

[211]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[212]  Hiroshi Segawa,et al.  PbS colloidal quantum dot/ZnO‐based bulk‐heterojunction solar cells with high stability under continuous light soaking , 2014 .

[213]  P. Würfel,et al.  Solar energy conversion with hot electrons from impact ionisation , 1997 .

[214]  Jenny Nelson,et al.  Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis , 2016, Nature communications.

[215]  Louise Hirst,et al.  Hot carrier dynamics in InGaAs/GaAsP quantum well solar cells , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[216]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[217]  Jean-François Guillemoles,et al.  Contactless mapping of saturation currents of solar cells by photoluminescence , 2012 .

[218]  Zhe Li,et al.  An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor , 2017, Advanced materials.

[219]  B. Pavageau,et al.  Organic semiconductor core–shell nanoparticles designed through successive solvent displacements , 2014 .

[220]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[221]  J. Katz,et al.  Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulisification as an alternative to ultrasonic and high-shear devices. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[222]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[223]  J. Shah,et al.  Radiative Recombination from Photoexcited Hot Carriers in GaAs , 1969 .

[224]  M. Bawendi,et al.  Colloidal quantum--dot light-emitting diodes with metal-oxide charge transport layers , 2008 .

[225]  P. G. Klemens,et al.  Anharmonic Decay of Optical Phonons , 1966 .

[226]  E. Sargent,et al.  Colloidal quantum dot solar cells , 2012, Nature Photonics.

[227]  Mikkel Jørgensen,et al.  Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods. , 2011, ACS nano.

[228]  Jianbo Gao,et al.  Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. , 2011, Nano letters.

[229]  M. Green,et al.  CsPbIBr2 Perovskite Solar Cell by Spray-Assisted Deposition , 2016 .

[230]  William G. Oldham,et al.  The temperature variation of the electron diffusion length and the internal quantum efficiency in GaAs electroluminescent diodes , 1972 .

[231]  Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images , 2012 .

[232]  P. Lalanne,et al.  Multi-resonant light trapping: New paradigm, new limits , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[233]  Ratan Debnath,et al.  Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells , 2012, Advanced materials.

[234]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[235]  Chao Zhang,et al.  Electronic and thermal transport in hot carrier solar cells with low-dimensional contacts , 2008, Microelectron. J..

[236]  Wilhelm Warta,et al.  Diffusion lengths of silicon solar cells from luminescence images , 2007 .

[237]  Tomah Sogabe,et al.  Recent progress on quantum dot intermediate band solar cells , 2013, IEICE Electron. Express.

[238]  Hiroshi Segawa,et al.  Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. , 2013, The journal of physical chemistry letters.

[239]  F. Fabregat‐Santiago,et al.  Enhanced Carrier Transport Distance in Colloidal PbS Quantum-Dot-Based Solar Cells Using ZnO Nanowires , 2015 .

[240]  Thomas Kirchartz,et al.  Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules , 2010 .

[241]  Yoshitaka Okada,et al.  Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells , 2017, OPTO.

[242]  Thomas Unold,et al.  Spatially resolved photoluminescence measurements on Cu(In, Ga)Se2 thin films , 2002 .

[243]  L. Lombez,et al.  Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers , 2012 .

[244]  U. Rau,et al.  Superposition and Reciprocity in the Electroluminescence and Photoluminescence of Solar Cells , 2012, IEEE Journal of Photovoltaics.

[245]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[246]  Photoluminescence-Based Current–Voltage Characterization of Individual Subcells in Multijunction Devices , 2016, IEEE Journal of Photovoltaics.

[247]  J. R. Haynes Experimental Proof of the Existence of a New Electronic Complex in Silicon , 1960 .

[248]  Jong Min Kim,et al.  Highly Monodispersed PbS Quantum Dots for Outstanding Cascaded-Junction Solar Cells , 2016, ACS energy letters.

[249]  Paolo Lugli,et al.  Luminescence based series resistance mapping of III-V multijunction solar cells , 2013 .

[250]  Bofei Xue,et al.  A multilayered approach to polyfluorene water-based organic photovoltaics , 2012 .

[251]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[252]  Y. Okada,et al.  Insights on energy selective contacts for thermal energy harvesting using double resonant tunneling contacts and numerical modeling , 2016 .

[253]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[254]  Michael Woodhouse,et al.  Economic competitiveness of III–V on silicon tandem one‐sun photovoltaic solar modules in favorable future scenarios , 2017 .

[255]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[256]  Edward H. Sargent,et al.  Schottky barriers to colloidal quantum dot films , 2007 .

[257]  Christophe Ballif,et al.  Realization of GaInP/Si Dual-Junction Solar Cells With 29.8% 1-Sun Efficiency , 2016, IEEE Journal of Photovoltaics.

[258]  Jianbo Gao,et al.  Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.

[259]  Thomas Kietzke,et al.  A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices , 2004 .

[260]  H. Hosack Double Barrier Transmission Characteristics , 1965 .

[261]  Y. Nakano,et al.  Electroluminescence-based quality characterization of quantum wells for solar cell applications , 2017 .

[262]  M. Kauer,et al.  A metallic hot carrier photovoltaic cell , 2015, Photonics West - Optoelectronic Materials and Devices.

[263]  B. Kauffmann,et al.  Functionalization of a ruthenium-diacetylide organometallic complex as a next-generation push-pull chromophore. , 2014, Chemistry.

[264]  Michail J. Beliatis,et al.  Baselines for Lifetime of Organic Solar Cells , 2016 .

[265]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[266]  C. Donolato,et al.  An alternative proof of the generalized reciprocity theorem for charge collection , 1989 .

[267]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[268]  Yoshiaki Nakano,et al.  Investigation of carrier collection in multi-quantum well solar cells by luminescence spectra analysis , 2015, Photonics West - Optoelectronic Materials and Devices.

[269]  Hiroshi Segawa,et al.  PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region , 2013 .

[270]  M. Senoner,et al.  Lateral resolution of nanoscaled images delivered by surface-analytical instruments: application of the BAM-L200 certified reference material and related ISO standards , 2015, Analytical and Bioanalytical Chemistry.

[271]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[272]  I. McCulloch,et al.  Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ee02598f Click here for additional data file. , 2016, Energy & environmental science.

[273]  D. Macdonald,et al.  Imaging crystal orientations in multicrystalline silicon wafers via photoluminescence , 2012 .

[274]  F. Fabregat‐Santiago,et al.  Surface Polarization Model for the Dynamic Hysteresis of Perovskite Solar Cells. , 2017, The journal of physical chemistry letters.

[275]  Mingzhen Liu,et al.  Recent efficient strategies for improving the moisture stability of perovskite solar cells , 2017 .

[276]  Paul A. Basore,et al.  Extended spectral analysis of internal quantum efficiency , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[277]  Jean Manca,et al.  Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions , 2017 .

[278]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[279]  Yoshiaki Nakano,et al.  Experimental Demonstration of Optically Determined Solar Cell Current Transport Efficiency Map , 2016, IEEE Journal of Photovoltaics.

[280]  T. Tatsuma,et al.  Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. , 2015, ACS nano.

[281]  Y. Okada,et al.  Evaluation of selective energy contact for hot carrier solar cells based on III–V semiconductors , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[282]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[283]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[284]  Feng Gao,et al.  Fullerene‐Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability , 2016, Advanced materials.

[285]  Thorsten Trupke,et al.  Photoluminescence Imaging for Photovoltaic Applications , 2012 .

[286]  Masakazu Sugiyama,et al.  A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells , 2015 .

[287]  K. Choudhury,et al.  Combined effects of MoO3 interlayer and PC70BM on polymer photovoltaic device performance , 2010 .

[288]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[289]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[290]  K. Catchpole,et al.  Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency , 2014, IEEE Journal of Photovoltaics.

[291]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[292]  M. Topič,et al.  Bandgap imaging in Cu(In,Ga)Se2 photovoltaic modules by electroluminescence , 2017 .

[293]  Thorsten Trupke,et al.  Advanced luminescence based effective series resistance imaging of silicon solar cells , 2008 .

[294]  R. T. Ross,et al.  Efficiency of hot-carrier solar energy converters , 1982 .

[295]  Alberto Salleo,et al.  High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor , 2016, Nature Communications.

[296]  Atse Louwen,et al.  Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development , 2016, Nature Communications.

[297]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[298]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .