The future of organic photovoltaics.

Increasing global demand for energy, along with dwindling fossil fuel resources and a better understanding of the hidden costs associated with these energy sources, have spurred substantial political, academic, and industrial interest in alternative energy resources. Photovoltaics based on organic semiconductors have emerged as promising low-cost alternatives for electricity generation that relies on sunlight. In this tutorial review we discuss the relevance of these organic photovoltaics beginning with some of the economic drivers for these technologies. We then examine the basic properties of these devices, including operation and materials requirements, in addition to presenting the development of the field from a historical perspective. Potential future directions are also briefly discussed. This tutorial review is intended to be an essential overview of the progress of the field, in addition to aiding in the discussion of the future of OPV technologies.

[1]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[2]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[3]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[4]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[5]  Yongfang Li,et al.  Fullerene derivative acceptors for high performance polymer solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[6]  Christoph J. Brabec,et al.  Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells , 2005 .

[7]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[8]  Timothy M. Burke,et al.  How High Local Charge Carrier Mobility and an Energy Cascade in a Three‐Phase Bulk Heterojunction Enable >90% Quantum Efficiency , 2014, Advanced materials.

[9]  Peter Bäuerle,et al.  Small molecule organic semiconductors on the move: promises for future solar energy technology. , 2012, Angewandte Chemie.

[10]  Alberto Salleo,et al.  Structural Factors That Affect the Performance of Organic Bulk Heterojunction Solar Cells , 2013 .

[11]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[12]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[13]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[14]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[15]  Jisoo Shin,et al.  Dependence of Exciton Diffusion Length on Crystalline Order in Conjugated Polymers , 2014 .

[16]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[17]  Gang Li,et al.  Control of the nanoscale crystallinity and phase separation in polymer solar cells , 2008 .

[18]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[19]  K. Knapp,et al.  Empirical investigation of the energy payback time for photovoltaic modules , 2001 .

[20]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[21]  Wi Hyoung Lee,et al.  Effect of Annealing Solvent Solubility on the Performance of Poly(3-hexylthiophene)/Methanofullerene Solar Cells , 2009 .

[22]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[23]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[24]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[25]  Feng Liu,et al.  On the morphology of polymer‐based photovoltaics , 2012 .

[26]  Harald Ade,et al.  A Quantitative Study of PCBM Diffusion during Annealing of P3HT:PCBM Blend Films , 2009 .

[27]  Markus Schwoerer,et al.  Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes , 1993 .

[28]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[29]  A. Heeger,et al.  Transferable graphene oxide by stamping nanotechnology: electron-transport layer for efficient bulk-heterojunction solar cells. , 2013, Angewandte Chemie.

[30]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[31]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[32]  Jan C Hummelen,et al.  Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. , 2005, The journal of physical chemistry. A.

[33]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[34]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[35]  Dennis Nordlund,et al.  P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. , 2011, Nano letters.

[36]  Tae-Woo Lee,et al.  Three‐Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells , 2009 .

[37]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[38]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[39]  Markus Hösel,et al.  Solar cells with one-day energy payback for the factories of the future , 2012 .

[40]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[41]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[42]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[43]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.