Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems

Mixed synchronization between two Hindmarsh-Rose neuron models is realized by optimizing the scheme of Lyapunov function with two selectable gain coefficients. Based on the Lyapunov stability theory, the distribution of synchronization region and the nonsynchronization region in the two-parameter phase space is calculated, respectively. And then the optimized parameter observers and controllers are approached analytically. All unknown parameters with different orders of magnitude are identified accurately, and the error function for corresponding variables decreases to stable value when the two gain coefficients are given values in the synchronization region. Otherwise, only the four larger unknown parameters are estimated exactly and the error function of corresponding variables decreases stably to certain minimal value with an order about 1 × 10-6, whereas the smallest unknown parameter is approached greatly although the error of corresponding variables are stabilized within certain transient period. © 2014 Wiley Periodicals, Inc. Complexity 20: 64-73, 2014

[1]  Ming-Chung Ho,et al.  Phase and anti-phase synchronization of two chaotic systems by using active control , 2002 .

[2]  Zhang Qing-ling,et al.  Backstepping synchronization of uncertain chaotic systems by a single driving variable , 2008 .

[3]  Xiaofeng Liao,et al.  Lag synchronization of Rossler system and Chua circuit via a scalar signal , 2004 .

[4]  Paul Woafo,et al.  Synchronized states in a ring of four mutually coupled oscillators and experimental application to secure communications , 2011 .

[5]  G. Deuschl,et al.  Estimation of time delay by coherence analysis , 2004, physics/0411141.

[6]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[7]  Jun Ma,et al.  Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system , 2011 .

[8]  陆君安,et al.  Adaptive synchronization of hyperchaotic Lü system with uncertainty , 2007 .

[9]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[10]  Ying Yang,et al.  Synchronization for a class of complex dynamical networks with time-delay , 2009 .

[11]  Vladimir E. Bondarenko Information processing, memories, and synchronization in chaotic neural network with the time delay , 2005 .

[12]  Xianfa Jiao,et al.  Synchronous firing patterns of neuronal population with excitatory and inhibitory connections , 2010 .

[13]  Xue-Rong Shi,et al.  Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller , 2009, Appl. Math. Comput..

[14]  Nejib Smaoui,et al.  Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems , 2011 .

[15]  Ashraf A. Zaher,et al.  On the design of chaos-based secure communication systems , 2011 .

[16]  M. Noorani,et al.  Anti-synchronization of two hyperchaotic systems via nonlinear control , 2009 .

[17]  Rafael Martínez-Guerra,et al.  A chaotic system in synchronization and secure communications , 2012 .

[18]  Xu Wei,et al.  Generalized synchronization of different orders of chaotic systems with unknown parameters and parameter identification , 2007 .

[19]  Li Nong,et al.  Anti-synchronization of uncertain chaotic system and parameters identification , 2010 .

[20]  Ayub Khan,et al.  Synchronization of circular restricted three body problem with lorenz hyper chaotic system using a robust adaptive sliding mode controller , 2013, Complex..

[21]  Gustavo Deco,et al.  Nonlinear independent component analysis and multivariate time series analysis , 1997 .

[22]  Hava T. Siegelmann,et al.  Circadian synchrony in networks of protein rhythm driven neurons , 2006, Complex..

[23]  Philipp Hövel,et al.  Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Li Xiaowen,et al.  Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect , 2007 .

[25]  Wenlin Li,et al.  Anti-synchronization of two different chaotic systems , 2008 .

[26]  C. Masoller Anticipation in the synchronization of chaotic time-delay systems , 2001 .

[27]  Liuxiao Guo,et al.  Generalized synchronization of two bidirectionally coupled discrete dynamical systems , 2012 .

[28]  Hadi Taghvafard,et al.  Phase and anti-phase synchronization of fractional order chaotic systems via active control , 2011 .

[29]  Zhao Ling-Dong,et al.  Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters , 2010 .

[30]  Rex K. Kincaid,et al.  An investigation of synchrony in transport networks , 2009 .

[31]  Xianfa Jiao,et al.  Analysis of stability of neural network with inhibitory neurons , 2010, Cognitive Neurodynamics.

[32]  Sunghwan Rim,et al.  Communication key using delay times in time-delayed chaos synchronization , 2004 .

[33]  W. S. Bush,et al.  Circadian synchrony in networks of protein rhythm driven neurons: Research Articles , 2006 .

[34]  Jinhu Lü,et al.  Coexistence of anti-phase and complete synchronization in the generalized Lorenz system , 2010 .

[35]  Chunni Wang,et al.  Identification of parameters with different orders of magnitude in chaotic systems , 2012 .

[36]  Rubin Wang,et al.  The modeling and simulation of visuospatial working memory , 2010, Cognitive Neurodynamics.

[37]  M. Mossa Al-sawalha,et al.  Adaptive anti-synchronization of chaotic systems with fully unknown parameters , 2010, Comput. Math. Appl..

[38]  José Manoel Balthazar,et al.  Synchronization of the unified chaotic system and application in secure communication , 2009 .

[39]  Zuo-Lei Wang,et al.  Anti-synchronization of Liu system and Lorenz system with known or unknown parameters , 2009 .

[40]  Netta Cohen,et al.  Time and space in neuronal networks: The effects of spatial organization on network behavior , 2010, Complex..

[41]  Carsten Behn Adaptive λ-tracking-control for relative degree two systems with application to bio-inspired sensors , 2007 .

[42]  A. N. Njah,et al.  Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques , 2010 .

[43]  Dequan Li,et al.  A novel active pinning control for synchronization and anti-synchronization of new uncertain unified chaotic systems , 2010 .

[44]  Xue-Rong Shi,et al.  Adaptive added-order anti-synchronization of chaotic systems with fully unknown parameters , 2009, Appl. Math. Comput..

[45]  Xingyuan Wang,et al.  Generalized projective synchronization of a class of hyperchaotic systems based on state observer , 2012 .

[46]  C. Volos,et al.  Various synchronization phenomena in bidirectionally coupled double scroll circuits , 2011 .

[47]  Albert C. J. Luo,et al.  A theory for synchronization of dynamical systems , 2009 .

[48]  E. M. Shahverdiev,et al.  Lag synchronization in time-delayed systems , 2002 .

[49]  A. Roy Chowdhury,et al.  Lyapunov function, parameter estimation, synchronization and chaotic cryptography , 2009 .

[50]  Paul Woafo,et al.  Chaotic synchronization with experimental application to secure communications , 2009 .

[51]  Zuolei Wang,et al.  Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters , 2009 .

[52]  Ma Jun,et al.  Optimization of self-adaptive synchronization and parameters estimation in chaotic Hindmarsh-Rose neuron model , 2010 .

[53]  Henry D I Abarbanel,et al.  Parameter and state estimation of experimental chaotic systems using synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  G. Hu,et al.  Three types of generalized synchronization , 2007 .

[55]  M. Noorani,et al.  Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters , 2010 .