A Monte Carlo approach to evolution of the far-infrared luminosity function with BLAST

We constrain the evolution of the rest-frame far-infrared (FIR) luminosity function out to high redshift, by combining several pieces of complementary information provided by the deep Balloon-borne Large-Aperture Submillimeter Telescope surveys at 250, 350 and 500 μm, as well as other FIR and millimetre data. Unlike most other phenomenological models, we characterize the uncertainties in our fitted parameters using Monte Carlo Markov Chains. We use a bivariate local luminosity function that depends only on FIR luminosity and 60-to-100 μm colour, along with a single library of galaxy spectral energy distributions indexed by colour, and apply simple luminosity and density evolution. We use the surface density of sources, Cosmic Infrared Background (CIB) measurements and redshift distributions of bright sources, for which identifications have been made, to constrain this model. The precise evolution of the FIR luminosity function across this crucial range has eluded studies at longer wavelengths (e.g. using SCUBA and MAMBO) and at shorter wavelengths (e.g. with Spitzer), and should provide a key piece of information required for the study of galaxy evolution. Our adoption of Monte Carlo methods enables us not only to find the best-fitting evolution model, but also to explore correlations between the fitted parameters. Our model-fitting approach allows us to focus on sources of tension coming from the combination of data sets. We specifically find that our choice of parametrization has difficulty fitting the combination of CIB measurements and redshift distribution of sources near 1 mm. Existing and future data sets will be able to dramatically improve the fits, as well as break strong degeneracies among the models. Two particular examples that we find to be crucial are: obtaining robust information on redshift distributions and placing tighter constraints on the range of spectral shapes for low-luminosity (L_(FIR) < 10^(10) L_⊙) sources.

[1]  Guilaine Lagache,et al.  Modeling the evolution of infrared galaxies: a parametric backward evolution model , 2010, 1010.1150.

[2]  M. Halpern,et al.  HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations , 2010, 1009.5675.

[3]  L.Wang,et al.  Evolution of dust temperature of galaxies through cosmic time as seen by Herschel , 2010, 1009.1058.

[4]  M.Vaccari,et al.  Herschel unveils a puzzling uniformity of distant dusty galaxies , 2010, 1005.2859.

[5]  J. Dunlop,et al.  A joint analysis of BLAST 250–500 μm and LABOCA 870 μm observations in the Extended Chandra Deep Field-South , 2010, 1003.2647.

[6]  H. Aussel,et al.  Spitzer deep and wide legacy mid- and far-infrared number counts and lower limits of cosmic infrared background , 2010, 1001.0896.

[7]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.

[8]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[9]  M. Halpern,et al.  A zTEC H alfSquare D egree Survey ofthe SH A D ES Fields { I.M aps,C atalogues,and Source C ounts , 2009, 0907.1093.

[10]  B. Groves,et al.  The formation of high-redshift submillimetre galaxies , 2009, 0904.0004.

[11]  D. Thompson,et al.  A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. I. SPECTRAL ENERGY DISTRIBUTIONS AND LUMINOSITIES , 2009, 0911.4515.

[12]  J. Dunlop,et al.  The BLAST 250 μm-selected galaxy population in GOODS-South , 2009, 0910.3642.

[13]  H. Rix,et al.  THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2009, 0910.2821.

[14]  J. Dunlop,et al.  BLAST: the far-infrared/radio correlation in distant galaxies , 2009, 0910.1091.

[15]  M. Halpern,et al.  An AzTEC 1.1 mm survey of the GOODS‐N field – II. Multiwavelength identifications and redshift distribution , 2009, 0906.4561.

[16]  I. Smail,et al.  A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE , 2009 .

[17]  R. Genzel,et al.  A BACKWARD EVOLUTION MODEL FOR INFRARED SURVEYS: THE ROLE OF AGN– AND COLOR–LTIR DISTRIBUTIONS , 2009, 0906.4110.

[18]  James J. Bock,et al.  SUBMILLIMETER NUMBER COUNTS FROM STATISTICAL ANALYSIS OF BLAST MAPS , 2009, 0906.0981.

[19]  Jens Hjorth,et al.  Cosmic evolution of submillimeter galaxies and their contribution to stellar mass assembly , 2009, 0905.4499.

[20]  James J. Bock,et al.  BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND , 2009, 0904.1205.

[21]  J. Dunlop,et al.  RADIO AND MID-INFRARED IDENTIFICATION OF BLAST SOURCE COUNTERPARTS IN THE CHANDRA DEEP FIELD SOUTH , 2009, 0904.1204.

[22]  James J. Bock,et al.  BLAST: A FAR-INFRARED MEASUREMENT OF THE HISTORY OF STAR FORMATION , 2009, 0904.1206.

[23]  I. Smail,et al.  MID-INFRARED SPECTROSCOPY OF SUBMILLIMETER GALAXIES: EXTENDED STAR FORMATION IN MASSIVE HIGH-REDSHIFT GALAXIES , 2009, 0903.4017.

[24]  NOAO,et al.  A submillimetre galaxy at z = 4.76 in the LABOCA survey of the Extended Chandra Deep Field-South , 2009, 0902.4464.

[25]  David Elbaz,et al.  Cosmic star-formation history from a non-parametric inversion of infrared galaxy counts , 2009, 0901.3783.

[26]  M. Rowan-Robinson,et al.  A new model for infrared and submillimetre counts , 2008, 0812.2609.

[27]  D. Elbaz,et al.  TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS , 2008, 0810.3108.

[28]  E. Chapin,et al.  Strong lensing of submillimetre galaxies: a tracer of foreground structure? , 2008, 0801.0274.

[29]  D. Hughes,et al.  The local FIR Galaxy Colour-Luminosity distribution: A reference for BLAST, and Herschel/SPIRE sub-mm surveys , 2008, 0811.2214.

[30]  O. Fèvre,et al.  Molecular Gas in a Submillimeter Galaxy at z = 4.5: Evidence for a Major Merger at 1 Billion Years after the Big Bang , 2008, 0810.3405.

[31]  M. Halpern,et al.  An AzTEC 1.1 mm Survey of the GOODS-N Field – I. Maps, Catalogue and Source Statistics , 2008, 0806.3791.

[32]  Xiaohui Fan,et al.  A Flexible Method of Estimating Luminosity Functions , 2008, 0805.2946.

[33]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[34]  M. Halpern,et al.  The SCUBA Half Degree Extragalactic Survey (SHADES) – IX. The environment, mass and redshift dependence of star formation , 2007, 0712.3613.

[35]  J. Wall,et al.  The evolution of submillimetre galaxies : two populations and a redshift cut-off , 2007, astro-ph/0702682.

[36]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[37]  D. Elbaz,et al.  The infrared compactness-temperature relation for quiescent and starburst galaxies , 2006, astro-ph/0610900.

[38]  W. Percival,et al.  The SCUBA half-degree extragalactic survey - II. Submillimetre maps, catalogue and number counts , 2006, astro-ph/0609039.

[39]  Douglas Scott,et al.  SCUBA-2: a 10,000-pixel submillimeter camera for the James Clerk Maxwell Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[40]  Anthony J. Walton,et al.  Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array , 2006, SPIE Astronomical Telescopes + Instrumentation.

[41]  G. Rieke,et al.  The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background. , 2006, astro-ph/0603208.

[42]  S. Serjeant,et al.  Properties of FIRBACK-ELAIS 175-μm sources in the ELAIS N2 region , 2005, astro-ph/0506273.

[43]  H. Dole,et al.  FIRBACK IV: Towards the nature of the 170microns source population , 2005, astro-ph/0504344.

[44]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[45]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[46]  G. Lewis,et al.  Modeling the Evolution of Infrared Luminous Galaxies: The Influence of the Luminosity-Temperature Distribution , 2004, astro-ph/0411079.

[47]  S. Serjeant,et al.  The local submillimetre luminosity functions and predictions from Spitzer to Herschel , 2004, astro-ph/0409498.

[48]  Itziar Aretxaga,et al.  The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources , 2004, SPIE Astronomical Telescopes + Instrumentation.

[49]  R. J. Ivison,et al.  Evidence for Extended, Obscured Starbursts in Submillimeter Galaxies , 2004, astro-ph/0412051.

[50]  G. Rieke,et al.  Polycyclic Aromatic Hydrocarbon Contribution to the Infrared Output Energy of the Universe at z ≃ 2 , 2004, astro-ph/0406016.

[51]  S. Serjeant,et al.  The Local sub-mm luminosity functions and predictions from Spitzer to Herschel , 2004 .

[52]  H. Dole,et al.  Spectroscopic follow-up of FIRBACK-South bright galaxies , 2003, astro-ph/0312598.

[53]  I. Smail,et al.  A median redshift of 2.4 for galaxies bright at submillimetre wavelengths , 2003, Nature.

[54]  G. Lewis,et al.  The Bivariate Luminosity-Color Distribution of IRAS Galaxies and Implications for the High-Redshift Universe , 2003, astro-ph/0301233.

[55]  G. Lagache,et al.  Predictions for Cosmological Infrared Surveys from Space with the Multiband Imaging Photometer for SIRTF , 2002, astro-ph/0211312.

[56]  H. Dole,et al.  Modelling infrared galaxy evolution using a phenomenological approach , 2002, astro-ph/0209115.

[57]  Edinburgh,et al.  Breaking the ‘redshift deadlock’– II. The redshift distribution for the submillimetre population of galaxies , 2002, astro-ph/0205313.

[58]  S. Chapman,et al.  Submillimetre and far-infrared spectral energy distributions of galaxies: the luminosity-temperature relation and consequences for photometric redshifts , 2002, astro-ph/0209450.

[59]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[60]  Loretta Dunne,et al.  The SCUBA Local Universe Galaxy Survey – II. 450‐μm data: evidence for cold dust in bright IRAS galaxies , 2001, astro-ph/0106362.

[61]  M. Rowan-Robinson,et al.  The Star Formation History of the Universe: An Infrared Perspective , 2001 .

[62]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[63]  Infrared Emission from Interstellar Dust. I. Stochastic Heating of Small Grains , 2000, astro-ph/0011318.

[64]  M. Malkan,et al.  An Empirically Based Model for Predicting Infrared Luminosity Functions, Deep Infrared Galaxy Counts, and the Diffuse Infrared Background , 2000, astro-ph/0009500.

[65]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[66]  Cong Xu,et al.  Local Luminosity Function at 15 Microns and Galaxy Evolution Seen by ISOCAM 15 Micron Surveys , 2000, astro-ph/0004216.

[67]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[68]  R. Ellis,et al.  The QDOT all‐sky IRAS galaxy redshift survey , 1999 .

[69]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[70]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[71]  J. Kneib,et al.  Erratum: The history of star formation in dusty galaxies , 1998, astro-ph/9806062.

[72]  D. Shupe,et al.  The Mid-Infrared Color-Luminosity Relation and the Local 12 Micron Luminosity Function , 1998, astro-ph/9803162.

[73]  J. Huchra,et al.  The Local Luminosity Function at 25 Microns , 1998, astro-ph/9803149.

[74]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[75]  A. Szalay,et al.  The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field , 1997, astro-ph/9706255.

[76]  E. Hivon,et al.  The optically dark side of galaxy formation , 1997, Nature.

[77]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[78]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[79]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[80]  G. Neugebauer,et al.  The properties of infrared galaxies in the local universe , 1991 .

[81]  R. Ellis,et al.  The 60-μ and far-infrared luminosity functions of IRAS galaxies , 1990 .

[82]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .