Method for predicting f/sub T/ for carbon nanotube FETs

A method based on a generic small-signal equivalent circuit for field-effect transistors is proposed for predicting the unity-current-gain frequency f/sub T/ for carbon-nanotube devices. The key to the useful implementation of the method is the rigorous estimation of the values for the components of the equivalent circuit. This is achieved by numerical differentiation of the charges and currents resulting from self-consistent solutions to the equations of Schrodinger and Poisson. Sample results are presented, which show that f/sub T/ can have a very unusual dependence on the gate-source bias voltage. This behavior is due mainly to the voltage dependence of the transconductance and capacitance in the presence of quasi-bound states in the nanotube.

[1]  An improved evaluation of the DC performance of carbon nanotube field-effect transistors , 2006 .

[2]  D. Neumayer,et al.  Frequency response of top-gated carbon nanotube field-effect transistors , 2004, IEEE Transactions on Nanotechnology.

[3]  David L. Pulfrey,et al.  Quantum capacitance in nanoscale device modeling , 2004 .

[4]  Leonardo C. Castro,et al.  Carbon nanotube transistors: an evaluation , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[5]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[6]  Peter Burke,et al.  AC performance of nanoelectronics: towards a ballistic THz nanotube transistor , 2004 .

[7]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[8]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[9]  D. Frank,et al.  High-frequency response in carbon nanotube field-effect transistors , 2004, IEEE Electron Device Letters.

[10]  Mark S. Lundstrom,et al.  A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.

[11]  H. Dai,et al.  High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. , 2004, Nano letters.

[12]  P. Avouris,et al.  Novel carbon nanotube FET design with tunable polarity , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[13]  David J. Frank,et al.  Frequency dependent characterization of transport properties in carbon nanotube transistors , 2004 .

[14]  S. Selberherr,et al.  Optimization of single-gate carbon-nanotube field-effect transistors , 2005, IEEE Transactions on Nanotechnology.

[15]  Franz Kreupl,et al.  Carbon nanotube applications in microelectronics , 2004 .

[16]  S. Datta,et al.  Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .

[17]  David L. Pulfrey,et al.  A Schrödinger-Poisson Solver for Modeling Carbon Nanotube FETs , 2004 .

[18]  Jerry Tersoff,et al.  Dielectric response of semiconducting carbon nanotubes , 2002 .

[19]  W. Hoenlein,et al.  Carbon nanotube applications in microelectronics , 2004, IEEE Transactions on Components and Packaging Technologies.

[20]  High frequency S parameters characterization of back-gate carbon nanotube field-effect transistors , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..