A variational formulation of kinematic waves: basic theory and complex boundary conditions

[1]  C. Daganzo A variational formulation of kinematic waves: Solution methods , 2005 .

[2]  Carlos F. Daganzo,et al.  A Variational Formulation for a Class of First Order PDE's , 2003 .

[3]  Carlos F. Daganzo,et al.  MOVING BOTTLENECKS: A THEORY GROUNDED ON EXPERIMENTAL OBSERVATION , 2002 .

[4]  G F Newell FLOWS UPSTREAM OF A HIGHWAY BOTTLENECK , 1999 .

[5]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[6]  Carlos F. Daganzo,et al.  A Simple Traffic Analysis Procedure , 1997 .

[7]  G. F. Newell A simplified theory of kinematic waves in highway traffic, part I: General theory , 1993 .

[8]  G. F. Newell A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks , 1993 .

[9]  Carlos F. Daganzo,et al.  TRANSPORTATION AND TRAFFIC THEORY , 1993 .

[10]  R. LeVeque Numerical methods for conservation laws , 1990 .

[11]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[12]  J. C. Luke,et al.  Mathematical models for landform evolution , 1972 .

[13]  P. I. Richards Shock Waves on the Highway , 1956 .

[14]  M. Lighthill,et al.  On kinematic waves I. Flood movement in long rivers , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[16]  J. S. Wang Statistical Theory of Superlattices with Long-Range Interaction. I. General Theory , 1938 .

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.