Comparative study between incremental and ensemble learning on data streams: Case study

[1]  Li Guo,et al.  Classifier and Cluster Ensembles for Mining Concept Drifting Data Streams , 2010, 2010 IEEE International Conference on Data Mining.

[2]  Hongjun Fan,et al.  An online incremental learning support vector machine for large-scale data , 2010, Neural Computing and Applications.

[3]  Xindong Wu,et al.  Ensemble pruning via individual contribution ordering , 2010, KDD.

[4]  Xin Yao,et al.  The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift , 2010, IEEE Transactions on Knowledge and Data Engineering.

[5]  Yongdai Kim,et al.  Model Averaging via Penalized Regression for Tracking Concept Drift , 2010 .

[6]  Qiang-Li Zhao,et al.  A fast ensemble pruning algorithm based on pattern mining process , 2009, Data Mining and Knowledge Discovery.

[7]  Ming-Syan Chen,et al.  Incremental SVM Model for Spam Detection on Dynamic Email Social Networks , 2009, 2009 International Conference on Computational Science and Engineering.

[8]  Yong Shi,et al.  Categorizing and mining concept drifting data streams , 2008, KDD.

[9]  Klaus-Robert Müller,et al.  Incremental Support Vector Learning: Analysis, Implementation and Applications , 2006, J. Mach. Learn. Res..

[10]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[11]  J. Alcobé Incremental Augmented Naive Bayes Classifiers , 2004, ECAI.

[12]  Wei Fan,et al.  Systematic data selection to mine concept-drifting data streams , 2004, KDD.

[13]  Ludmila I. Kuncheva,et al.  Classifier Ensembles for Changing Environments , 2004, Multiple Classifier Systems.

[14]  Marcus A. Maloof,et al.  Dynamic weighted majority: a new ensemble method for tracking concept drift , 2003, Third IEEE International Conference on Data Mining.

[15]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[16]  Li Deng,et al.  Incremental Bayes learning with prior evolution for tracking nonstationary noise statistics from noisy speech data , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[17]  Philip S. Yu,et al.  Pruning and dynamic scheduling of cost-sensitive ensembles , 2002, AAAI/IAAI.

[18]  Stefan Rüping,et al.  Incremental Learning with Support Vector Machines , 2001, ICDM.

[19]  Geoff Hulten,et al.  Mining time-changing data streams , 2001, KDD '01.

[20]  William Nick Street,et al.  A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.

[21]  Christophe G. Giraud-Carrier,et al.  A Note on the Utility of Incremental Learning , 2000, AI Commun..

[22]  Rong Xiao,et al.  An Approach to Incremental SVM Learning Algorithm , 2000, 2008 ISECS International Colloquium on Computing, Communication, Control, and Management.

[23]  Geoff Hulten,et al.  Mining high-speed data streams , 2000, KDD '00.

[24]  Huan Liu,et al.  Handling concept drifts in incremental learning with support vector machines , 1999, KDD '99.

[25]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[26]  Zhang Jing,et al.  A Simplified Learning Algorithm of Incremental Bayesian , 2009, CSIE.

[27]  Alexey Tsymbal,et al.  The problem of concept drift: definitions and related work , 2004 .

[28]  Glenn Fung,et al.  Incremental Support Vector Machine Classification , 2002, SDM.

[29]  S. Rüping,et al.  Incremental learning with support vector machines , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[30]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.