Algorithm Theoretical Basis Document (ATBD) for GEDI L2B Footprint Canopy Cover and Vertical Profile Metrics

Accurate measurements of vertical forest structure at a global scale are critically important to advance our knowledge of terrestrial ecology and biodiversity. NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission aims to fill current observation gaps by collecting the first high-resolution lidar observations of the 3D structure of the Earth and providing spatially dense samplings of forest structure between ~52° N and ~52° S. The GEDI instrument consists of 3 lasers producing a total of 8 beam ground transects that are spaced approximately 600 m apart on the Earth’s surface in the cross-track direction. Each beam transect consists of ~25 m footprint samples approximately spaced every 60 m along track. The fundamental footprint observations made by the GEDI instrument are received waveforms of energy as a function of receive time. These are combined with laser pointing and positioning information for precise geolocation and post-processed to determine ranging points of reflecting surfaces with the waveform footprint. The waveforms provided in the L1B product and locations of reflecting surfaces within the footprint provided in the L2A product are then used to derive the directional gap probability profile and extract biophysical metrics from each GEDI waveform. These metrics include canopy cover, Plant Area Index (PAI), Plant Area Volume Density (PAVD) and Foliage Height Diversity (FHD). This ATBD presents the algorithm and approach used to determine these biophysical metrics within the GEDI waveforms.

[1]  K. Itten,et al.  Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction , 2006 .

[2]  S. Díaz,et al.  The influence of habitat structure on arthropod diversity in Argentine semi‐arid Chaco forest , 1995 .

[3]  J. Vose,et al.  Vertical leaf area distribution, light transmittance, and application of the Beer–Lambert Law in four mature hardwood stands in the southern Appalachians , 1995 .

[4]  F. Baret,et al.  LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: validation and comparison with MODIS collection 4 products , 2007 .

[5]  Lee A. Vierling,et al.  The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest , 2008 .

[6]  J. Townshend,et al.  A new global 1‐km dataset of percentage tree cover derived from remote sensing , 2000 .

[7]  Rasmus Fensholt,et al.  MODIS leaf area index products: from validation to algorithm improvement , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Wenge Ni-Meister,et al.  Modeling lidar waveforms in heterogeneous and discrete canopies , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  Paul E. Gessler,et al.  The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data , 2008 .

[10]  Wenze Yang,et al.  Physically based vertical vegetation structure retrieval from ICESat data: Validation using LVIS in White Mountain National Forest, New Hampshire, USA , 2011 .

[11]  Frédéric Baret,et al.  Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Alan H. Strahler,et al.  Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing , 2009 .

[13]  John P. O'Neill,et al.  Vertical profile and canopy organization in a mixed deciduous forest , 1989, Vegetatio.

[14]  Geoffrey G. Parker,et al.  The canopy surface and stand development: assessing forest canopy structure and complexity with near-surface altimetry , 2004 .

[15]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[16]  A. Strahler,et al.  Global clumping index map derived from the MODIS BRDF product , 2012 .

[17]  Sassan Saatchi,et al.  Global Vegetation Structure from NASA's DESDynI Mission: An Overview , 2008 .

[18]  S. Goetz,et al.  Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. , 2010, Ecology.

[19]  David J. Harding,et al.  Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements , 2001 .

[20]  S. Garman,et al.  Comparison of five canopy cover estimation techniques in the western Oregon Cascades , 2006 .

[21]  Alan H. Strahler,et al.  Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®) , 2013 .

[22]  Alan H. Strahler,et al.  Measuring Effective Leaf Area Index, Foliage Profile, and Stand Height in New England Forest Stands Using a Full-Waveform Ground-Based Lidar , 2011 .

[23]  S. T. Gower,et al.  Leaf area index of boreal forests: theory, techniques, and measurements , 1997 .

[24]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[25]  J. Chen,et al.  Global mapping of foliage clumping index using multi-angular satellite data , 2005 .

[26]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[27]  Michael A. Wulder,et al.  Estimating forest canopy height and terrain relief from GLAS waveform metrics , 2010 .

[28]  Jing M. Chen,et al.  Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods , 1995, IEEE Trans. Geosci. Remote. Sens..

[29]  G. Parker,et al.  Seasonal balance and vertical pattern of photosynthetically active radiation within canopies of a tropical dry deciduous forest ecosystem in Mexico , 2005, Journal of Tropical Ecology.

[30]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[31]  P. Reich,et al.  Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest , 1993, Oecologia.

[32]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[33]  S. Goetz,et al.  The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness , 2014 .

[34]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[35]  Klaus Scipal,et al.  Theoretical uncertainty analysis of global MODIS, CYCLOPES, and GLOBCARBON LAI products using a triple collocation method , 2012 .

[36]  Emilio Chuvieco,et al.  Characterization of canopy fuels using ICESat/GLAS data , 2012 .

[37]  Brian Huntley,et al.  Characterising forest gap fraction with terrestrial lidar and photography: An examination of relative limitations , 2014 .

[38]  Stuart R. Phinn,et al.  Direct retrieval of canopy gap probability using airborne waveform lidar , 2013 .

[39]  Kim Calders,et al.  Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic: A case study in Lopé National Park, Gabon , 2018, Remote Sensing of Environment.

[40]  R. Dubayah,et al.  Large-scale retrieval of leaf area index and vertical foliage profile from the spaceborne waveform lidar (GLAS/ICESat) , 2014 .

[41]  R. Macarthur,et al.  Foliage Profile by Vertical Measurements , 1969 .

[42]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[43]  J. Townshend,et al.  Towards an operational MODIS continuous field of percent tree cover algorithm: examples using AVHRR and MODIS data , 2002 .

[44]  Xiaoli Sun,et al.  The GEDI Simulator: A Large‐Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions , 2019, Earth and space science.

[45]  Martin Herold,et al.  Implications of sensor configuration and topography on vertical plant profiles derived from terrestrial LiDAR , 2014 .

[46]  M. Lefsky,et al.  Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar , 2011 .

[47]  S. Goetz The lost promise of DESDynI , 2011 .

[48]  Yong Pang,et al.  Characterizing forest canopy structure with lidar composite metrics and machine learning , 2011 .

[49]  John D. Aber,et al.  FOLIAGE-HEIGHT PROFILES AND SUCCESSION IN NORTHERN HARDWOOD FORESTS' , 1979 .

[50]  J. Bryan Blair,et al.  Decomposition of laser altimeter waveforms , 2000, IEEE Trans. Geosci. Remote. Sens..

[51]  R. Houghton,et al.  Characterizing 3D vegetation structure from space: Mission requirements , 2011 .

[52]  R. Nelson,et al.  Characterizing leaf area index (LAI) and vertical foliage profile (VFP) over the United States , 2015 .

[53]  M. Lefsky,et al.  Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests , 2001 .

[54]  L. Vierling,et al.  Lidar: shedding new light on habitat characterization and modeling , 2008 .

[55]  Hongliang Fang,et al.  Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over reference sites , 2015 .

[56]  Sylvain G. Leblanc,et al.  Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Jb Miller,et al.  A formula for average foliage density , 1967 .

[58]  Bryan Blair,et al.  Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica , 2012 .

[59]  Joanne C. White,et al.  Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization , 2007 .

[60]  S. Ganguly,et al.  Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: Theory , 2008 .

[61]  S. Goetz,et al.  Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+ , 2015 .

[62]  S. Ganguly,et al.  Author ' s personal copy Generating vegetation leaf area index Earth system data record from multiple sensors . Part 2 : Implementation , analysis and validation , 2008 .

[63]  J. Armston Assessment of Airborne Lidar for Measuring the Structure of Forests and Woodlands in Queensland, Australia , 2013 .

[64]  Philip Lewis,et al.  A threshold insensitive method for locating the forest canopy top with waveform lidar , 2011 .

[65]  Ned Horning,et al.  Ten ways remote sensing can contribute to conservation , 2015, Conservation biology : the journal of the Society for Conservation Biology.

[66]  G. Henebry,et al.  Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions , 2009 .

[67]  S. T. Gower,et al.  Rapid Estimation of Leaf Area Index in Conifer and Broad-Leaf Plantations , 1991 .

[68]  Sassan Saatchi,et al.  PREFACE: DESDynI VEG-3D Special Issue , 2011 .

[69]  D. Roy,et al.  Large seasonal swings in leaf area of Amazon rainforests , 2007, Proceedings of the National Academy of Sciences.

[70]  Philip Lewis,et al.  Measuring forests with dual wavelength lidar: A simulation study over topography , 2012 .

[71]  Xiaohuan Xi,et al.  Retrieving leaf area index using ICESat/GLAS full-waveform data , 2013 .

[72]  Frances C. James,et al.  Relationships between Temperate Forest Bird Communities and Vegetation Structure , 1982 .

[73]  S. Goetz,et al.  Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA , 2006 .

[74]  Tiit Nilson,et al.  Inversion of gap frequency data in forest stands , 1999 .

[75]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[76]  Marc Simard,et al.  Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion , 2012, PloS one.

[77]  Y. Knyazikhin,et al.  Validation and intercomparison of global Leaf Area Index products derived from remote sensing data , 2008 .

[78]  J. L. Gittleman,et al.  The biodiversity of species and their rates of extinction, distribution, and protection , 2014, Science.

[79]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[80]  Chengquan Huang,et al.  Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error , 2013, Int. J. Digit. Earth.

[81]  Alan H. Strahler,et al.  Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®) , 2008 .

[82]  Scott J. Goetz,et al.  The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States , 2014, PloS one.

[83]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[84]  Jens Engelmann,et al.  Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions , 2015, Proceedings of the National Academy of Sciences.

[85]  T. Nilson A theoretical analysis of the frequency of gaps in plant stands , 1971 .

[86]  W. Salas,et al.  Baseline Map of Carbon Emissions from Deforestation in Tropical Regions , 2012, Science.

[87]  Andrew B. Carey,et al.  Induced spatial heterogeneity in forest canopies : Responses of small mammals , 2001 .

[88]  C. Woodcock,et al.  Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-Waveform Ground-Based Lidar , 2012 .

[89]  Yosio Edemir Shimabukuro,et al.  Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. , 2012, Ecology letters.

[90]  Matti Maltamo,et al.  Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index , 2011 .

[91]  Alan H. Strahler,et al.  Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA , 2014 .

[92]  D. Sheil,et al.  Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures , 1999 .

[93]  Tiit Nilson,et al.  Estimating canopy cover in Scots pine stands , 2005 .

[94]  D. Harding,et al.  ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure , 2005 .

[95]  Geoffrey M. Henebry,et al.  Assessing sustainability indicators for tropical forests: Spatio-temporal heterogeneity, logging intensity, and dung beetle communities , 2007 .

[96]  Chengquan Huang,et al.  Conservation policy and the measurement of forests , 2016 .