Van Der Waals Interactions In Density Functional Theory

The history of van der Waals or dispersion forces dates a long way back [1, 2]. The recent book Van der Waals and Molecular Sciences [1] gives a detailed account of van der Waals’s own contributions and life-long interest in the field. It is interesting to note that this truly quantum-mechanical problem [3, 4, 5] has been addressed by theorists long before the birth of quantum mechanics. The force between atoms, molecules, clusters, complexes, surfaces, and other fragments of matter is dominated by the weak but long-ranged van der Waals interactions at large separations. This is the region that has been primarily addressed. Calculations of the interaction potential between neutral species were first done for molecules [6, 7], leading to the well known asymptotic R −6 form of London [5]. The asymptotic z −3 form of the interaction potential between a neutral atom and a surface was first identified by Lennard-Jones [8], with subsequent refined treatments of the atom and surface polarizabilities [9, 10]. For the interaction between solid bodies, general formulas have been derived [11], which for flat surfaces a long distance d apart give an interaction energy that varies as d −2 [12]. For very large distances, where the limited magnitude of the velocity of light matters, retardation effects are important [13]. Such relativistic effects are physically interesting but beyond the scope of the present work.

[1]  Erika Hult,et al.  Trends in atom/molecule-surface van der Waals interactions , 1997 .

[2]  D. Langreth,et al.  Density Functional for van der Waals Forces at Surfaces. , 1996, Physical review letters.

[3]  Courtois,et al.  Measurement of the van der Waals Force in an Atomic Mirror. , 1996, Physical review letters.

[4]  M. Persson,et al.  Physisorption energies: influence of surface structure , 1996 .

[5]  Bradley P. Dinte,et al.  Constraint satisfaction in local and gradient susceptibility approximations: Application to a van der Waals density functional. , 1996, Physical review letters.

[6]  Håkan Wennerström,et al.  Role of hydration and water structure in biological and colloidal interactions , 1996, Nature.

[7]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[8]  D. Langreth,et al.  Density functional theory including Van Der Waals forces , 1995 .

[9]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[10]  Dalgarno,et al.  Dispersion coefficients for alkali-metal dimers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[11]  Kiejna Surface properties of simple metals in a structureless pseudopotential model. , 1993, Physical review. B, Condensed matter.

[12]  D. M. Bishop,et al.  Calculation of the polarizability and hyperpolarizability tensors, at imaginary frequency, for H, He, and H2 and the dispersion polarizability coefficients for interactions between them , 1992 .

[13]  William J. Meath,et al.  Dipole oscillator strength properties and dispersion energies for acetylene and benzene , 1992 .

[14]  Ashcroft,et al.  Fluctuation attraction in condensed matter: A nonlocal functional approach. , 1991, Physical review. B, Condensed matter.

[15]  M. Spackman Time‐dependent Hartree–Fock second‐order molecular properties with a moderately sized basis set. II. Dispersion coefficients , 1991 .

[16]  Smith,et al.  Stabilized jellium: Structureless pseudopotential model for the cohesive and surface properties of metals. , 1990, Physical review. B, Condensed matter.

[17]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[18]  P. Wormer,et al.  Correlated van der Waals coefficients. II. Dimers consisting of CO, HF, H2O, and NH3 , 1989 .

[19]  P. Wormer,et al.  The frequency‐dependent polarizability of O2 and the dispersion interaction in dimers containing O2 from a single, double, triple configuration interaction perturbation approach , 1989 .

[20]  Patrick W. Fowler,et al.  Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .

[21]  M. Persson,et al.  Physisorption interaction of H 2 with noble-metal surfaces: A new H 2 -Cu potential , 1988 .

[22]  Vosko,et al.  Exact electron-gas response functions at high density. , 1987, Physical review letters.

[23]  Liebsch Density-functional calculation of the dynamic image plane at a metal surface: Reference-plane position of He- and H2-metal van der Waals interaction. , 1986, Physical review. B, Condensed matter.

[24]  P. Apell,et al.  Saturation Effects of the Atom-metal Van der Waals Interaction , 1986 .

[25]  A. Zangwill,et al.  Individual atoms and molecules as dielectric media , 1985 .

[26]  A. Stone,et al.  AB-initio prediction of properties of carbon dioxide, ammonia, and carbon dioxide...ammonia , 1985 .

[27]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[28]  B. Persson,et al.  Reference-plane position for the atom-surface van der Waals interaction , 1984 .

[29]  H. Gollisch Dipole polarisabilities of atoms: an Xα density matrix study , 1984 .

[30]  D. Langreth,et al.  Beyond the local-density approximation in calculations of ground-state electronic properties , 1983 .

[31]  B. Persson,et al.  Sum rules for surface response functions with application to the van der Waals interaction between an atom and a metal , 1983 .

[32]  W. J. Meath,et al.  Dipole oscillator strength distributions, sums, and dispersion energy coefficients for CO and CO2☆ , 1982 .

[33]  P. Ahlqvist,et al.  On the Hydrodynamical Theory for Surface Plasmons , 1982 .

[34]  Michael J. Mehl,et al.  Easily Implementable Nonlocal Exchange-Correlation Energy Functional , 1981 .

[35]  W. Kohn,et al.  Universal model for the surface energy of solids , 1979 .

[36]  W. Kutzelnigg,et al.  Natural states of interacting systems and their use for the calculation of intermolecular forces.: III. One-term approximations of oscillator strength sums and dynamic polarizabilities , 1978 .

[37]  R. Barrera,et al.  Effect of refraction of p-polarized light on angle-resolved photoemission from surface states on metals , 1978 .

[38]  John P. Perdew,et al.  Exchange-correlation energy of a metallic surface: Wave-vector analysis , 1977 .

[39]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[40]  J. M. Norbeck,et al.  Upper and lower bounds of two‐ and three‐body dipole, quadrupole, and octupole van der Waals coefficients for hydrogen, noble gas, and alkali atom interactions , 1976 .

[41]  W. Kohn,et al.  Van der Waals interaction between an atom and a solid surface , 1976 .

[42]  John P. Perdew,et al.  The exchange-correlation energy of a metallic surface , 1975 .

[43]  D. Langbein Theory of Van der Waals Attraction , 1974 .

[44]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[45]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[46]  E. M. Lifshitz,et al.  The general theory of van der Waals forces , 1961 .

[47]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[48]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[49]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .

[50]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[51]  K. Burke,et al.  Derivation of a generalized gradient approximation: The PW91 density functional , 1998 .

[52]  M. Wolf Elementary Processes in Excitations and Reactions on Solid Surfaces , 1997 .

[53]  D. Langreth,et al.  van der Waals Density Functional for Atoms and Surfaces , 1996 .

[54]  H. Güntherodt,et al.  Scanning Tunneling Microscopy III , 1993 .

[55]  U. Hartmann Theory of Non-contact Force Microscopy , 1993 .

[56]  J. Israelachvili Intermolecular and surface forces , 1985 .

[57]  G. Mahan van der Waals coefficient between closed shell ions , 1982 .

[58]  P. Feibelman Surface electromagnetic fields , 1982 .

[59]  P. Apell On the Surface Photoelectric Effect in Aluminum , 1982 .

[60]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .

[61]  J. Boer The influence of van der Waals' forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins , 1936 .

[62]  J. Lennard-jones,et al.  Processes of adsorption and diffusion on solid surfaces , 1932 .