Effects of sequence and structure on the hypermutability of immunoglobulin genes.

[1]  M. Flajnik,et al.  Decreased Frequency of Somatic Hypermutation and Impaired Affinity Maturation but Intact Germinal Center Formation in Mice Expressing Antisense RNA to DNA Polymerase ζ1 , 2001, The Journal of Immunology.

[2]  C. Woo,et al.  Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Toshiro Matsuda,et al.  Somatic mutation hotspots correlate with DNA polymerase η error spectrum , 2001, Nature Immunology.

[4]  E. G. Frank,et al.  Altered nucleotide misinsertion fidelity associated with polι‐dependent replication at the end of a DNA template , 2001, The EMBO journal.

[5]  U. Storb DNA polymerases in immunity: profiting from errors , 2001, Nature Immunology.

[6]  M. Flajnik,et al.  The translesion DNA polymerase zeta plays a major role in Ig and bcl-6 somatic hypermutation. , 2001, Immunity.

[7]  Q. Kong,et al.  DNA breaks in hypermutating immunoglobulin genes: evidence for a break-and-repair pathway of somatic hypermutation. , 2001, Genetics.

[8]  D. Schatz,et al.  Cell-cycle-regulated DNA double-strand breaks in somatic hypermutation of immunoglobulin genes , 2000, Nature.

[9]  K. Rajewsky,et al.  DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. , 2000, Immunity.

[10]  U. Storb,et al.  The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. , 2000, International immunology.

[11]  C. Bustamante,et al.  Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. , 2000, Science.

[12]  P. Lipsky,et al.  Somatic hypermutation of VκJκ rearrangements: targeting of RGYW motifs on both DNA strands and preferential selection of mutated codons within RGYW motifs , 1999 .

[13]  L. Wysocki,et al.  Predicting regional mutability in antibody V genes based solely on di- and trinucleotide sequence composition. , 1999, Journal of immunology.

[14]  J. Spencer,et al.  Characteristics of sequences around individual nucleotide substitutions in IgVH genes suggest different GC and AT mutators. , 1999, Journal of immunology.

[15]  P. Isaacson,et al.  Nonimmunoglobulin gene hypermutation in germinal center B cells. , 1999, Blood.

[16]  G. Orphanides,et al.  Requirement of RSF and FACT for transcription of chromatin templates in vitro. , 1998, Science.

[17]  A. Imbalzano,et al.  Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. , 1998, Molecular cell.

[18]  M. Neuberger,et al.  TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. , 1998, Immunity.

[19]  M. Flajnik,et al.  Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Pasqualucci,et al.  BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  U. Storb,et al.  A Hypermutable Insert in an Immunoglobulin Transgene Contains Hotspots of Somatic Mutation and Sequences Predicting Highly Stable Structures in the RNA Transcript , 1998, The Journal of experimental medicine.

[22]  F. Delbos,et al.  Probing immunoglobulin gene hypermutation with microsatellites suggests a nonreplicative short patch DNA synthesis process. , 1998, Immunity.

[23]  U. Storb,et al.  Somatic Hypermutation of an Artificial Test Substrate Within an Igκ Transgene , 1998, The Journal of Immunology.

[24]  U. Storb,et al.  Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. , 1998, Science.

[25]  M. Wabl,et al.  Critical test of hot spot motifs for immunoglobulin hypermutation , 1997, European journal of immunology.

[26]  T. Manser,et al.  The Transcriptional Promoter Regulates Hypermutation of the Antibody Heavy Chain Locus , 1997, The Journal of experimental medicine.

[27]  U. Storb,et al.  The molecular basis of somatic hypermutation of immunoglobulin genes. , 1996, Current opinion in immunology.

[28]  L. Wysocki,et al.  Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. , 1996, Journal of immunology.

[29]  G. Kelsoe The germinal center reaction. , 1995, Immunology today.

[30]  C. Milstein,et al.  The 5′ boundary of somatic hypermutation in a Vχ gene is in the leader intron , 1994 .

[31]  C. Milstein,et al.  Elements regulating somatic hypermutation of an immunoglobulin κ gene: Critical role for the intron enhancer/matrix attachment region , 1994, Cell.

[32]  G. Felsenfeld,et al.  A histone octamer can step around a transcribing polymerase without leaving the template , 1994, Cell.

[33]  K. Zaret,et al.  An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array , 1993, Cell.

[34]  C. Milstein,et al.  Discriminating intrinsic and antigen-selected mutational hotspots in immunoglobulin V genes. , 1993, Immunology today.

[35]  N A Kolchanov,et al.  Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. , 1992, Biochimica et biophysica acta.

[36]  D. Price,et al.  Control of formation of two distinct classes of RNA polymerase II elongation complexes , 1992, Molecular and cellular biology.

[37]  P. Gearhart,et al.  Boundaries of somatic mutation in rearranged immunoglobulin genes: 5' boundary is near the promoter, and 3' boundary is approximately 1 kb from V(D)J gene , 1990, The Journal of experimental medicine.

[38]  J. Pollard,et al.  Distribution of mutations around rearranged heavy-chain antibody variable-region genes , 1990, Molecular and cellular biology.

[39]  M. Zuker On finding all suboptimal foldings of an RNA molecule. , 1989, Science.

[40]  T. Sekiya,et al.  Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[42]  D. Bogenhagen,et al.  Clusters of point mutations are found exclusively around rearranged antibody variable genes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[43]  P. Gearhart,et al.  DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes , 2001, Nature Immunology.

[44]  U. Storb,et al.  Somatic hypermutation of immunoglobulin genes is linked to transcription. , 1998, Current topics in microbiology and immunology.

[45]  U. Storb,et al.  Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. , 1996, Immunity.

[46]  E. Steele Somatic hypermutation in V-regions. , 1991 .