Hyperbolic Wavelet-Fisz Denoising for a Model Arising in Ultrasound Imaging

We present an algorithm and its fully data-driven extension for noise reduction in ultrasound imaging. The proposed method computes the hyperbolic wavelet transform of the image, before applying a multiscale variance stabilization technique, via a Fisz transformation. This adapts the wavelet coefficients statistics to the wavelet thresholding paradigm. The use of hyperbolic wavelets makes it possible to recover the image while respecting the anisotropic nature of structural details. The data-driven extension obviates the need for any prior knowledge of the noise model parameters by estimating the noise variance using an isotonic Nadaraya–Watson estimator. Experiments on synthetic and real data demonstrate the potential of the proposed algorithm to recover ultrasound images while preserving tissue details. Furthermore, comparisons with other noise-reduction methods show that our technique is competitive with the state-of-the-art OBNLM filter. Finally, the variance estimation procedure is applied to real images emphasizing the noise model.

[1]  Piotr Fryzlewicz,et al.  Data and text mining Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach , 2006 .

[2]  Patrice Abry,et al.  Self-Similar Anisotropic Texture Analysis: The Hyperbolic Wavelet Transform Contribution , 2013, IEEE Transactions on Image Processing.

[3]  J. Leeuw,et al.  Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods , 2009 .

[4]  Pierrick Coupé,et al.  Nonlocal Means-Based Speckle Filtering for Ultrasound Images , 2009, IEEE Transactions on Image Processing.

[5]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Tong Fang,et al.  Ultrasound-Specific Segmentation via Decorrelation and Statistical Region-Based Active Contours , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  J. Goodman Statistical Properties of Laser Speckle Patterns , 1963 .

[8]  Xiaoping Yang,et al.  A Variational Model to Remove the Multiplicative Noise in Ultrasound Images , 2010, Journal of Mathematical Imaging and Vision.

[9]  Gerda Claeskens,et al.  Asymptotic Performance of Projection Estimators in Standard and Hyperbolic Wavelet Bases , 2015 .

[10]  Alessandro Foi,et al.  Ieee Transactions on Image Processing a Closed-form Approximation of the Exact Unbiased Inverse of the Anscombe Variance-stabilizing Transformation , 2022 .

[11]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[12]  S. Mallat A wavelet tour of signal processing , 1998 .

[13]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Piotr Fryzlewicz,et al.  Data-driven wavelet-Fisz methodology for nonparametric function estimation , 2007, 0711.0883.

[15]  Andrew F. Laine,et al.  Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing , 1998, IEEE Transactions on Medical Imaging.

[16]  Michel Desvignes,et al.  Bayesian wavelet-based Poisson intensity estimation of images using the Fisz transformation , 2003 .

[17]  Stéphane Jaffard Beyond Besov Spaces Part 1: Distributions of Wavelet Coefficients , 2004 .

[18]  Christin Wirth,et al.  Geometric Level Set Methods In Imaging Vision And Graphics , 2016 .

[19]  D. Donoho,et al.  Translation-Invariant DeNoising , 1995 .

[20]  Ming-Hsuan Yang,et al.  A New Image Quality Metric for Image Auto-denoising , 2013, 2013 IEEE International Conference on Computer Vision.

[21]  D. Kaplan,et al.  On the statistical characteristics of log-compressed Rayleigh signals: theoretical formulation and experimental results , 1993 .

[22]  Guy P. Nason,et al.  Wavelet Methods in Statistics with R , 2008 .

[23]  Xiaoyi Jiang,et al.  Histogram-Based Optical Flow for Motion Estimation in Ultrasound Imaging , 2012, Journal of Mathematical Imaging and Vision.

[24]  Stanley Osher,et al.  Multiplicative Denoising and Deblurring: Theory and Algorithms , 2003 .

[25]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[26]  D. Kaplan,et al.  On the statistical characteristics of log‐compressed Rayleigh signals: Theoretical formulation and experimental results , 1994 .

[27]  Véronique Delouille,et al.  GOES‐8 X‐ray sensor variance stabilization using the multiscale data‐driven Haar–Fisz transform , 2007 .

[28]  K. Parker,et al.  Deviations from Rayleigh Statistics in Ultrasonic Speckle , 1988, Ultrasonic imaging.

[29]  W. Linde STABLE NON‐GAUSSIAN RANDOM PROCESSES: STOCHASTIC MODELS WITH INFINITE VARIANCE , 1996 .

[30]  Patrick Bouthemy,et al.  Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences , 2010, IEEE Transactions on Medical Imaging.

[31]  M. Fisz The limiting distribution of a function of two independent random variables and its statistical application , 1955 .

[32]  Thomas S. Huang,et al.  Image processing , 1971 .

[33]  Alessandro Foi,et al.  Noise Parameter Mismatch in Variance Stabilization, With an Application to Poisson–Gaussian Noise Estimation , 2014, IEEE Transactions on Image Processing.

[34]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  T. Loupas,et al.  An adaptive weighted median filter for speckle suppression in medical ultrasonic images , 1989 .

[36]  Laurent Condat,et al.  A Generic Proximal Algorithm for Convex Optimization—Application to Total Variation Minimization , 2014, IEEE Signal Processing Letters.

[37]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Brani Vidakovic,et al.  Image Denoising With 2D Scale-Mixing Complex Wavelet Transforms , 2014, IEEE Transactions on Image Processing.

[39]  Marcos Martin-Fernandez,et al.  Anisotropic Diffusion Filter With Memory Based on Speckle Statistics for Ultrasound Images , 2015, IEEE Transactions on Image Processing.

[40]  Michael H. Neumann MULTIVARIATE WAVELET THRESHOLDING IN ANISOTROPIC FUNCTION SPACES , 2000 .

[41]  Scott T. Acton,et al.  Speckle reducing anisotropic diffusion , 2002, IEEE Trans. Image Process..

[42]  Alin Achim,et al.  Novel Bayesian multiscale method for speckle removal in medical ultrasound images , 2001, IEEE Transactions on Medical Imaging.

[43]  Mohamed-Jalal Fadili,et al.  Multiscale Variance-Stabilizing Transform for Mixed-Poisson-Gaussian Processes and its Applications in Bioimaging , 2007, 2007 IEEE International Conference on Image Processing.

[44]  V. Delouille,et al.  A data-driven HAAR-FISZ transform for multiscale variance stabilization , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[45]  Carl-Fredrik Westin,et al.  Oriented Speckle Reducing Anisotropic Diffusion , 2007, IEEE Transactions on Image Processing.

[46]  G. Nason,et al.  A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .

[47]  Michael Unser,et al.  Myocardial motion analysis from B-mode echocardiograms , 2005, IEEE Transactions on Image Processing.

[48]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  R. F. Wagner,et al.  Statistics of Speckle in Ultrasound B-Scans , 1983, IEEE Transactions on Sonics and Ultrasonics.

[50]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[51]  B. Silverman,et al.  The Stationary Wavelet Transform and some Statistical Applications , 1995 .