Reachability in Timed Counter Systems

We introduce Timed Counter Systems, a new class of systems mixing clocks and counters. Such systems have an infinite state space, and their reachability problems are generally undecidable. By abstracting clock values with a Region Graph, we show the Counter Reachability Problem to be decidable for three subclasses: Timed VASS, Bounded Timed Counter Systems, and Reversal-Bounded Timed Counter Systems.

[1]  Oscar H. Ibarra,et al.  Dense Counter Machines and Verification Problems , 2003, CAV.

[2]  Hubert Comon-Lundh,et al.  Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.

[3]  Oscar H. Ibarra,et al.  Binary Reachability Analysis of Discrete Pushdown Timed Automata , 2000, CAV.

[4]  Hubert Comon-Lundh,et al.  Timed Automata and the Theory of Real Numbers , 1999, CONCUR.

[5]  Laure Petrucci,et al.  FAST: Fast Acceleration of Symbolikc Transition Systems , 2003, CAV.

[6]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[7]  Richard M. Karp,et al.  Parallel Program Schemata , 1969, J. Comput. Syst. Sci..

[8]  Alain Finkel,et al.  On the omega-language Expressive Power of Extended Petri Nets , 2004, EXPRESS.

[9]  Roberto Gorrieri,et al.  Real-Time System Verification using P/T Nets , 1994, CAV.

[10]  Paul Gastin,et al.  Characterization of the Expressive Power of Silent Transitions in Timed Automata , 1998, Fundam. Informaticae.

[11]  Ahmed Bouajjani,et al.  Symbolic Techniques for Parametric Reasoning about Counter and Clock Systems , 2000, CAV.

[12]  Oscar H. Ibarra,et al.  Real-Counter Automata and Their Decision Problems , 2004, FSTTCS.

[13]  Tommaso Bolognesi,et al.  From timed Petri nets to timed LOTOS , 1990, PSTV.

[14]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[15]  Béatrice Bérard,et al.  Untiming Timed Languages , 1995, Inf. Process. Lett..

[16]  Alain Finkel,et al.  Reversal-Bounded Counter Machines Revisited , 2008, MFCS.

[17]  S. Rao Kosaraju,et al.  Decidability of reachability in vector addition systems (Preliminary Version) , 1982, STOC '82.

[18]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[19]  Alain Finkel,et al.  About Fast and TReX Accelerations , 2005, Electron. Notes Theor. Comput. Sci..

[20]  Ahmed Bouajjani,et al.  TReX: A Tool for Reachability Analysis of Complex Systems , 2001, CAV.

[21]  Alain Finkel,et al.  How to Compose Presburger-Accelerations: Applications to Broadcast Protocols , 2002, FSTTCS.

[22]  Laure Petrucci,et al.  FAST: acceleration from theory to practice , 2008, International Journal on Software Tools for Technology Transfer.

[23]  Philip Meir Merlin,et al.  A study of the recoverability of computing systems. , 1974 .

[24]  Ernst W. Mayr An Algorithm for the General Petri Net Reachability Problem , 1984, SIAM J. Comput..

[25]  Philippe Schnoebelen,et al.  Flat Acceleration in Symbolic Model Checking , 2005, ATVA.