Mathematical Modeling and Numerical Simulation of Atherosclerotic Plaque Progression Based on Fluid-Structure Interaction

In this work we propose a mathematical and numerical model to describe the early stages of atherosclerotic plaque formation, which is based on the interaction of processes with different spatial and temporal scales. A fluid–structure interaction problem, used to describe the cardiovascular mechanics arising between blood and the artery wall, is coupled to a set of differential problems describing the evolution of solute concentrations. In order to manage the multiscale-in-space nature of the involved processes, we propose a suitable numerical strategy based on the splitting and sequential solution of the coupled problem. We present some preliminary numerical results and investigate the effects of geometry, model parameters and coupling strategy on plaque growth.

[1]  Habib Samady,et al.  Role of biomechanical forces in the natural history of coronary atherosclerosis , 2016, Nature Reviews Cardiology.

[2]  D. Ku,et al.  Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation between Plaque Location and Low and Oscillating Shear Stress , 1985, Arteriosclerosis.

[3]  Alfio Quarteroni,et al.  FaCSI: A block parallel preconditioner for fluid-structure interaction in hemodynamics , 2016, J. Comput. Phys..

[4]  Dalin Tang,et al.  Computer simulations of atherosclerotic plaque growth in coronary arteries. , 2010, Molecular & cellular biomechanics : MCB.

[5]  Fabio Nobile,et al.  Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics , 2014, J. Comput. Phys..

[6]  R M Nerem,et al.  Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. , 1998, Circulation research.

[7]  G. Truskey,et al.  Characterization of sites with elevated LDL permeability at intercostal, celiac, and iliac branches of the normal rabbit aorta. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.

[8]  Jaime Gonzalez,et al.  Essential hypertension and oxidative stress: New insights. , 2014, World journal of cardiology.

[9]  B. Berk,et al.  Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. , 1998, Arteriosclerosis, thrombosis, and vascular biology.

[10]  Victoria McGilligan,et al.  Computational modelling of atherosclerosis , 2015, Briefings Bioinform..

[11]  Padmanabhan Seshaiyer,et al.  A nonconforming finite element method for fluid–structure interaction problems , 2005 .

[12]  Amirhossein Arzani Coronary artery plaque growth: A two‐way coupled shear stress–driven model , 2019, International journal for numerical methods in biomedical engineering.

[13]  D. Giddens,et al.  Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. , 2003, The Journal of biological chemistry.

[14]  Nikolaos A. Avgerinos,et al.  Mathematical Modelling and Simulation of Atherosclerosis Formation and Progress: A Review , 2019, Annals of Biomedical Engineering.

[15]  Avner Friedman,et al.  The LDL-HDL Profile Determines the Risk of Atherosclerosis: A Mathematical Model , 2014, PloS one.

[16]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[17]  V. Fuster,et al.  Atherosclerotic Vascular Disease Conference: Writing Group III: pathophysiology. , 2004, Circulation.

[18]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[19]  E. Edelman,et al.  Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. , 2007, Journal of the American College of Cardiology.

[20]  K. Cunningham,et al.  The role of shear stress in the pathogenesis of atherosclerosis , 2005, Laboratory Investigation.

[21]  M. Myerscough,et al.  Bifurcation and dynamics in a mathematical model of early atherosclerosis , 2015, Journal of Mathematical Biology.

[22]  J. Tarbell Mass transport in arteries and the localization of atherosclerosis. , 2003, Annual review of biomedical engineering.

[23]  R. Schroter,et al.  Arterial Wall Shear and Distribution of Early Atheroma in Man , 1969, Nature.

[24]  Willi Jäger,et al.  Modeling of the Early Stage of Atherosclerosis with Emphasis on the Regulation of the Endothelial Permeability. , 2020, Journal of theoretical biology.

[25]  W. Daniel,et al.  Endothelial dysfunction and monocyte recruitment in cells exposed to non-uniform shear stress. , 2008, Clinical hemorheology and microcirculation.

[26]  A. Glinzer,et al.  A multiphysics approach for modeling early atherosclerosis , 2018, Biomechanics and modeling in mechanobiology.

[27]  Daniel E Forman,et al.  2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. , 2019, Journal of the American College of Cardiology.

[28]  Eric M Isselbacher,et al.  Atherosclerotic Vascular Disease Conference: Writing Group I: epidemiology. , 2004, Circulation.

[29]  R. Ross Atherosclerosis is an inflammatory disease , 1999 .

[30]  Vanessa Díaz-Zuccarini,et al.  A Multiscale Model of Atherosclerotic Plaque Formation at Its Early Stage , 2011, IEEE Transactions on Biomedical Engineering.

[31]  Nicolas Meunier,et al.  Mathematical and numerical modeling of early atherosclerotic lesions , 2010 .

[32]  Charles A. Taylor,et al.  A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations. , 2009, Computer methods in applied mechanics and engineering.

[33]  P. Libby Inflammation in Atherosclerosis , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[34]  S. Grundy,et al.  2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. , 2019, Journal of the American College of Cardiology.

[35]  C. Zarins,et al.  Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization with Flow Velocity Profiles and Wall Shear Stress , 1983, Circulation research.

[36]  M. Gunel,et al.  The critical role of hemodynamics in the development of cerebral vascular disease. , 2010, Journal of neurosurgery.

[37]  D. Giddens,et al.  Oscillatory Shear Stress Stimulates Endothelial Production of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{-}\) \end{document} from p47phox-dependent NAD(P)H Oxidases, Le , 2003, Journal of Biological Chemistry.

[38]  R. Virmani,et al.  Biomechanical factors in atherosclerosis: mechanisms and clinical implications. , 2014, European heart journal.

[39]  Marc Garbey,et al.  A fully coupled computational fluid dynamics - agent-based model of atherosclerotic plaque development: Multiscale modeling framework and parameter sensitivity analysis , 2020, Comput. Biol. Medicine.

[40]  Fabio Nobile,et al.  Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics , 2013 .

[41]  Estefanía Peña,et al.  Mathematical modelling of atheroma plaque formation and development in coronary arteries , 2014, Journal of The Royal Society Interface.

[42]  Mathematical and Numerical Models of Atherosclerotic Plaque Progression in Carotid Arteries , 2019, ENUMATH.

[43]  S. Kiechl,et al.  The natural course of atherosclerosis. Part I: incidence and progression. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[44]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[45]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[46]  Willi Jäger,et al.  Mathematical modeling and simulation of the evolution of plaques in blood vessels , 2016, Journal of mathematical biology.

[47]  Shu Chien,et al.  Vascular endothelial responses to altered shear stress: Pathologic implications for atherosclerosis , 2009, Annals of medicine.

[48]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[49]  T I Zohdi,et al.  A phenomenological model for atherosclerotic plaque growth and rupture. , 2004, Journal of theoretical biology.

[50]  R. Ross,et al.  Atherosclerosis is an inflammatory disease. , 1998, American heart journal.