暂无分享,去创建一个
Pablo M. Olmos | David G. M. Mitchell | Daniel J. Costello | Dmitri V. Truhachev | D. Costello | D. Truhachev | P. Olmos
[1] Pablo M. Olmos,et al. A Scaling Law to Predict the Finite-Length Performance of Spatially-Coupled LDPC Codes , 2014, IEEE Transactions on Information Theory.
[2] Gerhard Fettweis,et al. Asymptotically good LDPC convolutional codes with AWGN channel thresholds close to the Shannon limit , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.
[3] Michael Lentmaier,et al. Exact free distance and trapping set growth rates for LDPC convolutional codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[4] J. Thorpe. Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .
[5] Pablo M. Olmos,et al. Scaling behavior of convolutional LDPC ensembles over the BEC , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[6] Pablo M. Olmos,et al. A finite length performance analysis of LDPC codes constructed by connecting spatially coupled chains , 2013, 2013 IEEE Information Theory Workshop (ITW).
[7] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[8] Abbas El Gamal,et al. Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.
[9] Andrea Montanari,et al. Finite-Length Scaling for Iteratively Decoded LDPC Ensembles , 2004, IEEE Transactions on Information Theory.
[10] Paul H. Siegel,et al. Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels , 2010, IEEE Transactions on Information Theory.
[11] Rüdiger L. Urbanke,et al. Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.
[12] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[13] Dmitri V. Truhachev. Achieving AWGN Multiple Access Channel Capacity with Spatial Graph Coupling , 2012, IEEE Communications Letters.
[14] Toshiyuki Tanaka,et al. Improvement of BP-based CDMA multiuser detection by spatial coupling , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[15] Michael Lentmaier,et al. Implementation aspects of LDPC convolutional codes , 2008, IEEE Transactions on Communications.
[16] Andrea Montanari,et al. Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.
[17] Henry D. Pfister,et al. The effect of spatial coupling on compressive sensing , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[18] David J. C. MacKay,et al. Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.
[19] Michael Lentmaier,et al. Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.
[20] Michael Lentmaier,et al. Connecting spatially coupled LDPC code chains , 2012, 2012 IEEE International Conference on Communications (ICC).
[21] Pablo M. Olmos,et al. A closed-form scaling law for convolutional LDPC codes over the BEC , 2013, 2013 IEEE Information Theory Workshop (ITW).
[22] Andrea Montanari,et al. Finite-length scaling of irregular LDPC code ensembles , 2005, IEEE Information Theory Workshop, 2005..
[23] Andrea Montanari,et al. Further results on finite-length scaling for iteratively decoded LDPC ensembles , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[24] Kenta Kasai,et al. Analytical Solution of Covariance Evolution for Irregular LDPC Codes , 2009, IEEE Transactions on Information Theory.
[25] Rüdiger L. Urbanke,et al. Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[26] Michael Gastpar,et al. Cooperative strategies and capacity theorems for relay networks , 2005, IEEE Transactions on Information Theory.
[27] Gerhard Fettweis,et al. Asymptotically regular LDPC codes with linear distance growth and thresholds close to capacity , 2010, 2010 Information Theory and Applications Workshop (ITA).
[28] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[29] Michael Lentmaier,et al. New codes on graphs constructed by connecting spatially coupled chains , 2012, 2012 Information Theory and Applications Workshop.
[30] Andrea Montanari,et al. A Generalization of the Finite-Length Scaling Approach Beyond the BEC , 2007, 2007 IEEE International Symposium on Information Theory.