[3] Glutamate dehydrogenases from hyperthermophiles

[1]  K. S. Yip,et al.  Structure determination of the glutamate dehydrogenase from the hyperthermophile Thermococcus litoralis and its comparison with that from Pyrococcus furiosus. , 1999, Journal of molecular biology.

[2]  H. Sakuraba,et al.  The NAD-dependent glutamate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum: cloning, sequencing, and expression of the enzyme gene(1). , 1999, Biochimica et biophysica acta.

[3]  P. Forterre,et al.  Cell-free transcription at 95 degrees: thermostability of transcriptional components and DNA topology requirements of Pyrococcus transcription. , 1999, Genetics.

[4]  H. Nakamura,et al.  Ion pairs involved in maintaining a thermostable structure of glutamate dehydrogenase from a hyperthermophilic archaeon. , 1998, Biochemical and biophysical research communications.

[5]  J. Lebbink,et al.  Insights into the molecular basis of thermal stability from the analysis of ion-pair networks in the glutamate dehydrogenase family. , 1998, European journal of biochemistry.

[6]  I. Steen,et al.  Purification and properties of an extremely thermostable NADP+-specific glutamate dehydrogenase from Archaeoglobus fulgidus , 1997, Archives of Microbiology.

[7]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[8]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[9]  S. Knapp,et al.  Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 A resolution. , 1997, Journal of molecular biology.

[10]  W. D. de Vos,et al.  A cell-free transcription system for the hyperthermophilic archaeon Pyrococcus furiosus. , 1996, Nucleic acids research.

[11]  J. DiRuggiero,et al.  Expression and in vitro assembly of recombinant glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus , 1995, Applied and environmental microbiology.

[12]  F. Robb,et al.  Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis , 1994, Applied and environmental microbiology.

[13]  R. Daniel,et al.  Glutamate dehydrogenase from the extremely thermophilic archaebacterial isolate AN1. , 1993, Biochimica et biophysica acta.

[14]  W. D. de Vos,et al.  The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus: sequence, transcription and analysis of the deduced amino acid sequence. , 1993, Gene.

[15]  J. DiRuggiero,et al.  Characterization, cloning, and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic Archaeon, ES4. , 1993, Journal of Biological Chemistry.

[16]  T. Ohshima,et al.  Purification and properties of extremely thermostable glutamate dehydrogenases from two hyperthermophilic archaebacteria, Pyrococcus woesei and Pyrococcus furiosus. , 1993, Bioscience, biotechnology, and biochemistry.

[17]  A. Stams,et al.  Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. , 1993, European journal of biochemistry.

[18]  F. Robb,et al.  Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Thermal denaturation and activation. , 1992, The Journal of biological chemistry.

[19]  J A Lake,et al.  Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. , 1992, Science.

[20]  M. McPherson,et al.  The glutamate dehydrogenase gene of Clotridium symbiosum , 1992 .

[21]  F. Robb,et al.  Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. , 1992, Biochimica et biophysica acta.

[22]  K. Britton,et al.  Subunit assembly and active site location in the structure of glutamate dehydrogenase , 1992, Proteins.

[23]  R. Chiaraluce,et al.  Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. , 1991, European journal of biochemistry.

[24]  E. Goldman,et al.  Low-usage codons in Escherichia coli, yeast, fruit fly and primates. , 1991, Gene.

[25]  R. Chiaraluce,et al.  Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1991, European journal of biochemistry.

[26]  B. Redl,et al.  Purification and properties of an extreme thermostable glutamate dehydrogenase from the archaebacterium Sulfolobus solfataricus. , 1991, Biochimica et biophysica acta.

[27]  P. Zwickl,et al.  Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli , 1990, Journal of bacteriology.

[28]  R. Kelly,et al.  Extremely Thermophilic Archaebacteria: Biological and Engineering Considerations , 1988 .

[29]  D. Rice,et al.  Crystallization of an NAD+-dependent glutamate dehydrogenase from Clostridium symbiosum. , 1985, Journal of molecular biology.

[30]  D. Hornby,et al.  Characterization of Peptostreptococcus asaccharolyticus glutamate dehydrogenase purified by dye-ligand chromatography. , 1984, Journal of general microbiology.

[31]  J. Wootton,et al.  Localisation of a strongly conserved section of coding sequence in glutamate dehydrogenase genes , 1982, FEBS letters.

[32]  F. Veronese,et al.  Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of Neurospora. I. Purification and molecular properties. , 1974, The Journal of biological chemistry.

[33]  H. A. Barker,et al.  Two Pathways of Glutamate Fermentation by Anaerobic Bacteria , 1974, Journal of bacteriology.

[34]  C. Piantadosi,et al.  The participation of 1- and 2-isomers of O-alkylglycerols as acyl acceptors in cell-free systems , 1970 .

[35]  F. Robb Archaea : a laboratory manual , 1995 .

[36]  R. Wierenga,et al.  INTERACTION OF PYROPHOSPHATE MOIETIES WITH ALPHA-HELIXES IN DINUCLEOTIDE BINDING-PROTEINS , 1985 .