Low-temperature asymptotics of integrable systems in an external field

An asymptotic low-temperature expansion is performed for an integrable bosonic lattice model and for the critical spin-1/2 Heisenberg chain in a magnetic field. The results apply to the integrable Bose gas as well. We also comment on a high-temperature expansion of the bosonic lattice model.

[1]  X. Guan,et al.  Fermionization and fractional statistics in the strongly interacting one-dimensional Bose gas , 2006, cond-mat/0608624.

[2]  M. Bortz Finite temperature Drude weight of an integrable Bose chain , 2006, cond-mat/0606050.

[3]  I. Affleck,et al.  Dynamical spin structure factor for the anisotropic spin-1/2 Heisenberg chain. , 2006, Physical review letters.

[4]  M. Bortz,et al.  The q-deformed Bose gas: integrability and thermodynamics , 2006, cond-mat/0603093.

[5]  M. Cazalilla Bosonizing one-dimensional cold atomic gases , 2003, cond-mat/0307033.

[6]  A. Klümper Integrability of quantum chains: Theory and applications to the spin-1/2 XXZ chain , 2004 .

[7]  Z. Tsuboi Nonlinear integral equations for thermodynamics of the sl(r + 1) Uimin?Sutherland model , 2002, cond-mat/0212280.

[8]  S. Lukyanov,et al.  Long-distance asymptotics of spin–spin correlation functions for the XXZ spin chain , 2002, hep-th/0206093.

[9]  Minoru Takahashi,et al.  Integral equation generates high-temperature expansion of the Heisenberg chain. , 2002, Physical review letters.

[10]  Minoru Takahashi,et al.  Equivalence of TBA and QTM , 2001, cond-mat/0102027.

[11]  B. Fauser On the Hopf algebraic origin of Wick normal ordering , 2000, hep-th/0007032.

[12]  Johnston,et al.  Thermodynamics of the spin- 1/2 antiferromagnetic uniform heisenberg chain , 2000, Physical review letters.

[13]  Minoru Takahashi Thermodynamics of One-Dimensional Solvable Models: The transfer matrix and correlation length , 1999 .

[14]  A. Klümper The spin-1/2 Heisenberg chain: thermodynamics, quantum criticality and spin-Peierls exponents , 1998 .

[15]  S. Lukyanov Low energy effective Hamiltonian for the XXZ spin chain , 1997, cond-mat/9712314.

[16]  N. Bogoliubov,et al.  Correlation functions for a strongly correlated boson system , 1997, solv-int/9710002.

[17]  N. Bogoliubov,et al.  Correlators of the phase model , 1996, solv-int/9612002.

[18]  A. Klumper,et al.  Exact thermodynamics and Luttinger liquid properties of the integrable t-J model , 1996, cond-mat/9611058.

[19]  J. Timonen,et al.  Quantum repulsive Nonlinear Schrödinger models and their ‘Superconductivity’ , 1995 .

[20]  Pang,et al.  Exact solution of a q-boson hopping model. , 1993, Physical review. B, Condensed matter.

[21]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[22]  R. Bullough,et al.  A q-deformed completely integrable Bose gas model , 1992 .

[23]  C. P. Yang One-Dimensional System of Bosons with Repulsive δ-Function Interactions at a Finite Temperature T , 1970 .