New Developments in Backward Stochastic Riccati Equations and Their Applications

The following backward stochastic Riccati differential equation (BSRDE in short) $$ \begin{gathered} d{K_t} = - \left[ {{{A'}_t}{K_t} + {K_t}{A_t} + \sum\limits_{i = 1}^d {{{C'}_{it}}{K_t}{C_{it}} + {Q_t} + \sum\limits_{i = 1}^d {({{C'}_{it}}{L_{it}} + {L_{it}}{C_{it}})} } } \right. \hfill \\ - \left( {{K_t}{B_t} + \sum\limits_{i = 1}^d {{{C'}_{it}}{K_t}{D_{it}} + \sum\limits_{i = 1}^d {{L_{it}}{D_{it}}} } } \right){\left( {{N_t} + \sum\limits_{i = 1}^d {{{D'}_{it}}{K_t}{D_{it}}} } \right)^{ - 1}} \hfill \\ \times \left. {{{\left( {{K_t}{B_t} + \sum\limits_{i = 1}^d {{{C'}_{it}}{K_t}{D_{it}} + \sum\limits_{i = 1}^d {{L_{it}}{D_{it}}} } } \right)}^\prime }} \right]dt + \sum\limits_{i = 1}^d {{L_{it}}d{w_{it}}} \hfill \\ 0 \leqslant t < T, \hfill \\ {K_T} = M. \hfill \\ \end{gathered} $$ is motivated, and is then studied. Various properties are presented. The existence and uniqueness of a global adapted solution to a BSRDE has been open for the case Di # 0 for more than two decades. Recently, we have made a breakthrough on this problem. On this topic, the literature is reviewed, and our recent results are surveyed. Finally, applications are outlined, both in finance and control, which contain another unique feature of our recent works — exposing the novel crucial role of stochastic maximum principle and the BMO-property of the solutions for BSRDEs in obtaining the necessary regularities, so as to overcome the new difficulty which arises from applications of BSRDEs and which roots in a general combination of both the random nature of the coefficients and the control-dependent nature of the system noise.

[1]  Ifip Wg,et al.  Control of Distributed Parameter and Stochastic Systems, Proceedings of the IFIP WG7.2 International Conference, June 19-22, 1998, Hangzhou, China , 1999, Control of Distributed Parameter and Stochastic Systems.

[2]  S. Peng,et al.  Backward stochastic differential equations and quasilinear parabolic partial differential equations , 1992 .

[3]  H. Pham,et al.  Mean‐Variance Hedging and Numéraire , 1998 .

[4]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[5]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[6]  J. Lepeltier,et al.  Existence for BSDE with superlinear–quadratic coefficient , 1998 .

[7]  J. Bismut Linear Quadratic Optimal Stochastic Control with Random Coefficients , 1976 .

[8]  Michael Kohlmann,et al.  Optimal Control of Linear Stochastic Systems with Singular Costs, and the Mean-Variance Hedging Problem with Stochastic Market Conditions , 2000 .

[9]  S. Peng A Generalized dynamic programming principle and hamilton-jacobi-bellman equation , 1992 .

[10]  J. Lepeltier,et al.  Backward stochastic differential equations with continuous coefficient , 1997 .

[11]  W. Wonham Random differential equations in control theory , 1970 .

[12]  J. Bismut Conjugate convex functions in optimal stochastic control , 1973 .

[13]  Xun Yu Zhou,et al.  Stochastic Linear Quadratic Regulators with Indefinite Control Weight Costs. II , 2000, SIAM J. Control. Optim..

[14]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[15]  Xun Yu Zhou,et al.  Relationship Between Backward Stochastic Differential Equations and Stochastic Controls: A Linear-Quadratic Approach , 2000, SIAM J. Control. Optim..

[16]  S. Peng A general stochastic maximum principle for optimal control problems , 1990 .

[17]  R. Bellman FUNCTIONAL EQUATIONS IN THE THEORY OF DYNAMIC PROGRAMMING. V. POSITIVITY AND QUASI-LINEARITY. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Duffie,et al.  Mean-variance hedging in continuous time , 1991 .

[19]  A. T. Bharucha-Reid,et al.  Probabilistic methods in applied mathematics , 1968 .

[20]  Shige Peng,et al.  Stochastic Hamilton-Jacobi-Bellman equations , 1992 .

[21]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[22]  Mark H. A. Davis,et al.  Applied Stochastic Analysis , 1991 .

[23]  M. Schweizer Mean-Variance Hedging for General Claims , 1992 .

[24]  Huyên Pham,et al.  Dynamic programming and mean-variance hedging , 1999, Finance Stochastics.

[25]  W. Wonham On the Separation Theorem of Stochastic Control , 1968 .

[26]  Shanjian Tang,et al.  Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean-Variance Hedging , 2002 .

[27]  Shige Peng,et al.  Probabilistic interpretation for systems of quasilinear parabolic partial differential equations , 1991 .

[28]  Huyên Pham,et al.  Mean-variance hedging for continuous processes: New proofs and examples , 1998, Finance Stochastics.

[29]  H. R. Richardson A Minimum Variance Result in Continuous Trading Portfolio Optimization , 1989 .

[30]  W. Wonham On a Matrix Riccati Equation of Stochastic Control , 1968 .

[31]  Martin Schweizer,et al.  Approximating random variables by stochastic integrals , 1994 .

[32]  L. I. Gal’chuk Existence and Uniqueness of a Solution for Stochastic Equations with Respect to Semimartingales , 1979 .

[33]  M. Kobylanski,et al.  Résultats d'existence et d'unicité pour des équations différentielles stochastiques rétrogrades avec des générateurs à croissance quadratique , 1997 .

[34]  É. Pardoux,et al.  Forward-backward stochastic differential equations and quasilinear parabolic PDEs , 1999 .

[35]  Rodrigo Bañuelos,et al.  Paraproducts and commutators of martingale transforms , 1988 .

[36]  Michael Kohlmann,et al.  Multidimensional Backward Stochastic Riccati Equations and Applications , 2002, SIAM J. Control. Optim..

[37]  Xunjing Li,et al.  Necessary Conditions for Optimal Control of Stochastic Systems with Random Jumps , 1994 .

[38]  M. Schweizer Approximation pricing and the variance-optimal martingale measure , 1996 .

[39]  C. Stricker,et al.  Follmer-Schweizer Decomposition and Mean-Variance Hedging for General Claims , 1995 .