THE LOW-TEMPERATURE AND HIGH-PRESSURE THERMOELASTIC AND STRUCTURAL PROPERTIES OF CHALCOPYRITE, CuFeS2

The thermoelastic properties of a sample of chalcopyrite from the Palabora mine, South Africa, have been investigated in the temperature range 4.2 – 330 K at ambient pressure, and between 0.22 and 6.81 GPa at ambient temperature. Magnetization measurements indicated a transition to a second antiferromagnetically ordered phase in the region of 53 K; however, all attempts to characterize this magnetic phase by introducing an ordered moment onto the copper site were unsuccessful owing to the small magnitude of the refined magnetic moment. In agreement with other low-temperature crystallographic measurements made on non-antiferromagnetically ordered adamantine-structured semiconducting materials (group IV; I–VII, II–VI, III–V, I–III–VI2, II–IV–V2 compounds), chalcopyrite exhibits negative linear and volumetric thermal expansion over a significant temperature interval. Calculation of the speeds of sound for a number of high-symmetry wave vectors is consistent with Blackman’s model for negative thermal expansion. The unit-cell volume and isochoric heat-capacity have been fitted assuming a two-term Debye internal energy function, with consistent values being found for the two characteristic temperatures. The temperature dependence of the thermodynamic Gruneisen parameter shows a deep minimum of ~−3 at T/θ ~0.55 (θ is the Debye temperature at 0 K) and a high-temperature limit of ~0.7; these results are the first demonstration that a chalcopyrite-structured phase behaves in the characteristic manner of the simpler adamantine-structured semiconducting materials. No systematic variation in either the nuclear nor the magnetic structure was found between 4.2 and 330 K, and the vibrational Debye temperatures derived by fitting the temperature dependence of the isotropic atomic displacement parameters show no relationship to features in the phonon density of states function. The bulk modulus of chalcopyrite is 77(2) GPa, in good agreement with that determined by ab initio calculations and a recent X-ray-diffraction study, and its pressure derivative is 2.0(6). At high pressure, chalcopyrite remains antiferromagnetically ordered until 6.7(2) GPa, at which point a transition to an amorphous phase is observed. Slow decompression of this phase leads to only a limited recovery of the crystalline phase.

[1]  S. Hull,et al.  A high temperature diffraction-resistance study of chalcopyrite, CuFeS2 , 2011 .

[2]  K. Knight,et al.  The thermal expansion and crystal structure of mirabilite (Na2SO4·10D2O) from 4.2 to 300 K, determined by time-of-flight neutron powder diffraction , 2009 .

[3]  K. Knight,et al.  POWDER NEUTRON-DIFFRACTION STUDIES OF CLINOPYROXENES. I. THE CRYSTAL STRUCTURE AND THERMOELASTIC PROPERTIES OF JADEITE BETWEEN 1.5 AND 270 K , 2008 .

[4]  S. Hull,et al.  A high temperature cell for simultaneous electrical resistance and neutron diffraction measurements. , 2008, The Review of scientific instruments.

[5]  Y. Ohishi,et al.  Pressure-induced amorphization of CuFeS2 studied by Fe-57 nuclear resonant inelastic scattering , 2007 .

[6]  S. Collins,et al.  Dichroism and resonant diffraction in x-ray scattering by complex materials , 2007 .

[7]  V. Garg,et al.  Characterization of a chalcopyrite from Brazil by Mössbauer spectroscopy and other physicochemical techniques , 2007 .

[8]  K. Knight,et al.  Structural basis for the anomalous low-temperature thermal expansion behaviour of the gillespite-structured phase Ba0.5Sr0.5CuSi4O10 , 2007 .

[9]  R. Pattrick,et al.  Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics , 2006 .

[10]  M. Alfredsson,et al.  The thermoelastic properties of MgSO4·7D2O (epsomite) from powder neutron diffraction and ab initio calculation , 2006 .

[11]  A. Fortes The thermoelastic properties of epsomite (MgSO 4 .7D 2 O) from powder neutron diffraction and ab initio simulation , 2006 .

[12]  M. Alfredsson,et al.  The incompressibility and thermal expansivity of D2O ice II determined by powder neutron diffraction , 2005 .

[13]  N. Allan,et al.  Negative thermal expansion , 2005 .

[14]  S. Molodtsov,et al.  A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2 , 2005 .

[15]  K. Parlinski,et al.  Ab initio characterization of magnetic CuFeS 2 , 2004 .

[16]  H. Neumann Lattice dynamics and related properties of AIBIII and AIIBIV compounds, I. Elastic constants , 2004 .

[17]  G. Sawatzky,et al.  Cu and Fe valence states in CuFeS2 , 2004 .

[18]  David P. Dobson,et al.  Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction , 2004 .

[19]  E. C. Todd,et al.  Surface oxidation of chalcocite (Cu2S) under aqueous (pH = 2–11) and ambient atmospheric conditions: Mineralogy from Cu L- and O K-edge X-ray absorption spectroscopy , 2003 .

[20]  E. C. Todd,et al.  Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2-10) conditions: Cu, Fe L- and O K-edge X-ray spectroscopy , 2003 .

[21]  K. Knight,et al.  Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powder diffraction , 2002 .

[22]  G. White,et al.  Heat Capacity and Thermal Expansion at Low Temperatures , 1999 .

[23]  B. Hennion,et al.  Phonons in silver gallium diselenide , 1997 .

[24]  I. Swainson,et al.  Phonons and spin waves in the magnetic semiconductor chalcopyrite, CuFeS2 , 1997 .

[25]  I. Swainson,et al.  Low temperature magnetic behaviour of CuFeSe2 from neutron diffraction data , 1996 .

[26]  I. Swainson,et al.  Low temperature magnetic behaviour of CuFeS2 from neutron diffraction data , 1996 .

[27]  A. Polian,et al.  Combined x-ray absorption and x-ray diffraction studies of CuGaS2, CuGaSe2, CuFeS2 and CuFeSe2 under high pressure , 1994 .

[28]  A. Polian,et al.  Combined x-ray absorption and x-ray diffraction studies of CuGaS 2 , CuGaSe 2 , CuFeS 2 and CuFeSe 2 under high pressure , 1994 .

[29]  J. Loveday,et al.  Neutron powder diffraction above 10 GPa , 1992 .

[30]  N. Sirota,et al.  Elastic stiffness constants of chalcopyrite from x-ray diffraction analysis , 1991 .

[31]  A. Polubotko,et al.  Gapless state in CuFeS2 , 1990 .

[32]  Harold T. Stokes,et al.  Isotropy Subgroups Of The 230 Crystallographic Space Groups , 1989 .

[33]  P. Deus,et al.  Low‐temperature thermal expansion of ZnSiAs2 , 1988 .

[34]  G. Grimvall Thermophysical properties of materials , 1986 .

[35]  R. A. Robie,et al.  Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4)☆ , 1985 .

[36]  R. D. Tomlinson,et al.  Thermal expansion of CuInTe2 from 30 to 300 K , 1984 .

[37]  G. Kühn,et al.  Low-Temperature Thermal Expansion in CuInSe2 , 1983, November 16.

[38]  R. Feigelson,et al.  Elastic behaviour of the chalcopyrite CdGeAs2 , 1982 .

[39]  T. Oguchi,et al.  Self-consistent electronic structures of magnetic semiconductors by a discrete variational X α calculation. III. Chalcopyrite CuFe S 2 , 1981 .

[40]  G. Kühn,et al.  Anisotropic thermal expansion of Cu–III–VI2 compounds , 1981 .

[41]  T. Oguchi,et al.  Optical Reflectivity Spectrum of a CuFeS2 Single Crystal , 1980 .

[42]  H. Neumann Trends in the thermal expansion coefficients of the AIBIIIC2VI and AIIBIVC2V chalcopyrite compounds , 1980 .

[43]  J. L. Queisser,et al.  Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications , 1976 .

[44]  Doneln F. Pnlorrronr eNn RnlpH,et al.  The electrical resistivity of galena, pyrite, and chalcopyrite , 1976 .

[45]  M. Vyas,et al.  Metal-semiconductor transition in single crystal chalcopyrite (CuFeS2) , 1974 .

[46]  J. G. Collins,et al.  Thermal expansion of solids at low temperatures , 1974 .

[47]  W. Haase William G. Fateley, Francis R. Dollish, Neil T. McDevitt und Freeman F. Bentley: Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method, Wiley‐Interscience, New York 1972. 222 Seiten. Preis: £ 5.45. , 1974 .

[48]  J. Tossell,et al.  Magnetic Transitions Observed in Sulfide Minerals at Elevated Pressures and Their Geophysical Significance , 1973, Science.

[49]  W. G. Fateley Infrared and Raman selection rules for molecular and lattice vibrations : the correlation method , 1972 .

[50]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[51]  Daniel L. Decker,et al.  High‐Pressure Equation of State for NaCl, KCl, and CsCl , 1971 .

[52]  G. V. Gibbs,et al.  Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra , 1971, Science.

[53]  J. Suwalski,et al.  Mössbauer Effect Study in Chalcopyrite , 1968 .

[54]  E. Gopal Specific Heats at Low Temperatures , 1966 .

[55]  T. Teranishi Magnetic and Electric Properties of Chalcopyrite , 1961 .

[56]  J. M. Hastings,et al.  Symmetry of Magnetic Structures: Magnetic Structure of Chalcopyrite , 1958 .

[57]  B. Donovan,et al.  Electrical properties of chalcopyrite , 1958 .

[58]  M. Blackman On negative volume expansion coefficients , 1958 .

[59]  T. Barron Grüneisen parameters for the equation of state of solids , 1957 .

[60]  C. Goodman,et al.  New Semiconductors with the Chalcopyrite Structure , 1956 .