THE LOW-TEMPERATURE AND HIGH-PRESSURE THERMOELASTIC AND STRUCTURAL PROPERTIES OF CHALCOPYRITE, CuFeS2
暂无分享,去创建一个
[1] S. Hull,et al. A high temperature diffraction-resistance study of chalcopyrite, CuFeS2 , 2011 .
[2] K. Knight,et al. The thermal expansion and crystal structure of mirabilite (Na2SO4·10D2O) from 4.2 to 300 K, determined by time-of-flight neutron powder diffraction , 2009 .
[3] K. Knight,et al. POWDER NEUTRON-DIFFRACTION STUDIES OF CLINOPYROXENES. I. THE CRYSTAL STRUCTURE AND THERMOELASTIC PROPERTIES OF JADEITE BETWEEN 1.5 AND 270 K , 2008 .
[4] S. Hull,et al. A high temperature cell for simultaneous electrical resistance and neutron diffraction measurements. , 2008, The Review of scientific instruments.
[5] Y. Ohishi,et al. Pressure-induced amorphization of CuFeS2 studied by Fe-57 nuclear resonant inelastic scattering , 2007 .
[6] S. Collins,et al. Dichroism and resonant diffraction in x-ray scattering by complex materials , 2007 .
[7] V. Garg,et al. Characterization of a chalcopyrite from Brazil by Mössbauer spectroscopy and other physicochemical techniques , 2007 .
[8] K. Knight,et al. Structural basis for the anomalous low-temperature thermal expansion behaviour of the gillespite-structured phase Ba0.5Sr0.5CuSi4O10 , 2007 .
[9] R. Pattrick,et al. Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics , 2006 .
[10] M. Alfredsson,et al. The thermoelastic properties of MgSO4·7D2O (epsomite) from powder neutron diffraction and ab initio calculation , 2006 .
[11] A. Fortes. The thermoelastic properties of epsomite (MgSO 4 .7D 2 O) from powder neutron diffraction and ab initio simulation , 2006 .
[12] M. Alfredsson,et al. The incompressibility and thermal expansivity of D2O ice II determined by powder neutron diffraction , 2005 .
[13] N. Allan,et al. Negative thermal expansion , 2005 .
[14] S. Molodtsov,et al. A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2 , 2005 .
[15] K. Parlinski,et al. Ab initio characterization of magnetic CuFeS 2 , 2004 .
[16] H. Neumann. Lattice dynamics and related properties of AIBIII and AIIBIV compounds, I. Elastic constants , 2004 .
[17] G. Sawatzky,et al. Cu and Fe valence states in CuFeS2 , 2004 .
[18] David P. Dobson,et al. Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction , 2004 .
[19] E. C. Todd,et al. Surface oxidation of chalcocite (Cu2S) under aqueous (pH = 2–11) and ambient atmospheric conditions: Mineralogy from Cu L- and O K-edge X-ray absorption spectroscopy , 2003 .
[20] E. C. Todd,et al. Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2-10) conditions: Cu, Fe L- and O K-edge X-ray spectroscopy , 2003 .
[21] K. Knight,et al. Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powder diffraction , 2002 .
[22] G. White,et al. Heat Capacity and Thermal Expansion at Low Temperatures , 1999 .
[23] B. Hennion,et al. Phonons in silver gallium diselenide , 1997 .
[24] I. Swainson,et al. Phonons and spin waves in the magnetic semiconductor chalcopyrite, CuFeS2 , 1997 .
[25] I. Swainson,et al. Low temperature magnetic behaviour of CuFeSe2 from neutron diffraction data , 1996 .
[26] I. Swainson,et al. Low temperature magnetic behaviour of CuFeS2 from neutron diffraction data , 1996 .
[27] A. Polian,et al. Combined x-ray absorption and x-ray diffraction studies of CuGaS2, CuGaSe2, CuFeS2 and CuFeSe2 under high pressure , 1994 .
[28] A. Polian,et al. Combined x-ray absorption and x-ray diffraction studies of CuGaS 2 , CuGaSe 2 , CuFeS 2 and CuFeSe 2 under high pressure , 1994 .
[29] J. Loveday,et al. Neutron powder diffraction above 10 GPa , 1992 .
[30] N. Sirota,et al. Elastic stiffness constants of chalcopyrite from x-ray diffraction analysis , 1991 .
[31] A. Polubotko,et al. Gapless state in CuFeS2 , 1990 .
[32] Harold T. Stokes,et al. Isotropy Subgroups Of The 230 Crystallographic Space Groups , 1989 .
[33] P. Deus,et al. Low‐temperature thermal expansion of ZnSiAs2 , 1988 .
[34] G. Grimvall. Thermophysical properties of materials , 1986 .
[35] R. A. Robie,et al. Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4)☆ , 1985 .
[36] R. D. Tomlinson,et al. Thermal expansion of CuInTe2 from 30 to 300 K , 1984 .
[37] G. Kühn,et al. Low-Temperature Thermal Expansion in CuInSe2 , 1983, November 16.
[38] R. Feigelson,et al. Elastic behaviour of the chalcopyrite CdGeAs2 , 1982 .
[39] T. Oguchi,et al. Self-consistent electronic structures of magnetic semiconductors by a discrete variational X α calculation. III. Chalcopyrite CuFe S 2 , 1981 .
[40] G. Kühn,et al. Anisotropic thermal expansion of Cu–III–VI2 compounds , 1981 .
[41] T. Oguchi,et al. Optical Reflectivity Spectrum of a CuFeS2 Single Crystal , 1980 .
[42] H. Neumann. Trends in the thermal expansion coefficients of the AIBIIIC2VI and AIIBIVC2V chalcopyrite compounds , 1980 .
[43] J. L. Queisser,et al. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications , 1976 .
[44] Doneln F. Pnlorrronr eNn RnlpH,et al. The electrical resistivity of galena, pyrite, and chalcopyrite , 1976 .
[45] M. Vyas,et al. Metal-semiconductor transition in single crystal chalcopyrite (CuFeS2) , 1974 .
[46] J. G. Collins,et al. Thermal expansion of solids at low temperatures , 1974 .
[47] W. Haase. William G. Fateley, Francis R. Dollish, Neil T. McDevitt und Freeman F. Bentley: Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method, Wiley‐Interscience, New York 1972. 222 Seiten. Preis: £ 5.45. , 1974 .
[48] J. Tossell,et al. Magnetic Transitions Observed in Sulfide Minerals at Elevated Pressures and Their Geophysical Significance , 1973, Science.
[49] W. G. Fateley. Infrared and Raman selection rules for molecular and lattice vibrations : the correlation method , 1972 .
[50] D. Wallace,et al. Thermodynamics of Crystals , 1972 .
[51] Daniel L. Decker,et al. High‐Pressure Equation of State for NaCl, KCl, and CsCl , 1971 .
[52] G. V. Gibbs,et al. Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra , 1971, Science.
[53] J. Suwalski,et al. Mössbauer Effect Study in Chalcopyrite , 1968 .
[54] E. Gopal. Specific Heats at Low Temperatures , 1966 .
[55] T. Teranishi. Magnetic and Electric Properties of Chalcopyrite , 1961 .
[56] J. M. Hastings,et al. Symmetry of Magnetic Structures: Magnetic Structure of Chalcopyrite , 1958 .
[57] B. Donovan,et al. Electrical properties of chalcopyrite , 1958 .
[58] M. Blackman. On negative volume expansion coefficients , 1958 .
[59] T. Barron. Grüneisen parameters for the equation of state of solids , 1957 .
[60] C. Goodman,et al. New Semiconductors with the Chalcopyrite Structure , 1956 .