Low-cost monochromatic microsecond flash microbeam apparatus for single-cell photolysis of rhodopsin or other photolabile pigments

Delivery of intense, brief flashes of monochromatic light are required in single-cell physiological experiments to photolyze cellular chromophores or pigments. In the xenon flash instrument constructed, flashes are collimated, made monochromatic with selectable bandpass filters and imaged into a small-core fiber. The flash is transmitted over meters to the epiflourescent port of a microscope where additional optics again collimate the beam. The objective lens of the microscope functions to condense flash energy into a microbeam in the specimen (field) plane and to image the cell under parafocal conditions. Spot diameters are 228 and 166 μm (full width half maximum) for 40× and 60× objectives. Flash intensities can be measured with this instrument during experiments using the microscope phase/differential interference contrast condenser to couple the microbeam to a calibrated photodiode. Flash intensities between 108 and 109 photons/μm2 were achieved across the near-ultraviolet/visible spectrum. Flash dura...

[1]  V. Skulachev,et al.  Fast stages of photoelectric processes in biological membranes. III. Bacterial photosynthetic redox system. , 2005, European journal of biochemistry.

[2]  J. S. Huebner,et al.  PHOTO‐ELECTRIC EFFECTS IN BILAYER MEMBRANES; ELECTROMETERS AND VOLTAGE CLAMPS COMPARED , 1984 .

[3]  R. Cone Early Receptor Potential: Photoreversible Charge Displacement in Rhodopsin , 1967, Science.

[4]  W. Lederer,et al.  Restoring forces in cardiac myocytes. Insight from relaxations induced by photolysis of caged ATP. , 1991, Biophysical journal.

[5]  Russell D. Snyder,et al.  Handbook of Sensory Physiology: Principles of Receptor Physiology. , 1972 .

[6]  H. Khorana,et al.  Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[7]  H. Dartnall,et al.  The interpretation of spectral sensitivity curves. , 1953, British medical bulletin.

[8]  H. Trissl LIGHT‐INDUCED CONFORMATIONAL CHANGES IN CATTLE RHODOPSIN AS PROBED BY MEASUREMENTS OF THE INTEFFACE POTENTIAL , 1979, Photochemistry and photobiology.

[9]  M. Gusinow Spectral efficiency of pulsed high‐current flashlamps , 1975 .

[10]  J. G. A. De Graaf,et al.  Proceedings of the Sixth International Congress on High-Speed Photography , 1963 .

[11]  K. Fahmy,et al.  Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. Pugh Rhodopsin flash photolysis in man. , 1975, The Journal of physiology.

[13]  T. Williams,et al.  Photoreversal of Rhodopsin Bleaching , 1964, The Journal of general physiology.

[14]  D. Trentham,et al.  Properties and Uses of Photoreactive Caged Compounds , 1989 .

[15]  John H. Goncz,et al.  RESISTIVITY OF XENON PLASMA , 1965 .

[16]  W. Ernst,et al.  Reversal of photoreceptor bleaching and adaptation by microsecond flashes , 1979, Vision Research.

[17]  J. Pickett-Heaps,et al.  Ultraviolet microbeam irradiations of mitotic diatoms: investigation of spindle elongation , 1983, The Journal of cell biology.

[18]  M. Lindau,et al.  Two component fast photo‐signals derived from rod outer segment membranes attached to porous cellulose filters , 1980, FEBS letters.

[19]  L Ellis,et al.  Nerve growth cones isolated from fetal rat brain. IV. Preparation of a membrane subfraction and identification of a membrane glycoprotein expressed on sprouting neurons , 1985, The Journal of cell biology.

[20]  C. M. Davenport,et al.  Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. , 1993, The Journal of biological chemistry.

[21]  T. Williams,et al.  Rhodopsin bleaching: relative effectiveness of high and low intensity flashes. , 1965, Vision research.

[22]  W. Hubbell,et al.  Light-induced interfacial potentials in photoreceptor membranes. , 1980, Biophysical journal.

[23]  A. Hodgkin,et al.  Internal recording of the early receptor potential in turtle cones. , 1977, The Journal of physiology.

[24]  D. Bownds Site of Attachment of Retinal in Rhodopsin , 1967, Nature.

[25]  F. Barnes,et al.  Design and Operation of Xenon Flashtubes , 1963 .

[26]  R. Perry,et al.  Improved Ultraviolet Microbeam Apparatus , 1957 .

[27]  P. Liebman,et al.  Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions. , 1984, Biochemistry.

[28]  A. Forer,et al.  Irradiations of rabbit myofibrils with an ultraviolet microbeam. I. Effects of ultraviolet light on the myofibril components necessary for contraction. , 1987, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[29]  R A Mathies,et al.  The first step in vision: femtosecond isomerization of rhodopsin. , 1991, Science.

[30]  J. Lisman,et al.  Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors , 1977, The Journal of general physiology.

[31]  D. Perlman Characteristics and Operation of Xenon Filled Linear Flashlamps , 1966 .

[32]  John H. Goncz,et al.  Spectra of Pulsed and Continuous Xenon Discharges , 1966 .

[33]  B. Garside,et al.  High-energy short-pulse flashlamps: operating characteristics. , 1977, Applied optics.

[34]  J. Nathans,et al.  Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[35]  W. Almers,et al.  Photobleaching through glass micropipettes: sodium channels without lateral mobility in the sarcolemma of frog skeletal muscle. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[36]  H. Edgerton,et al.  Xenon Arc Transients, Electrical and Optical , 1956 .

[37]  H. Dartnall The photosensitivities of visual pigments in the presence of hydroxylamine. , 1968, Vision research.

[38]  A. Lamola,et al.  Effects of detergents and high pressures upon the metarhodopsin I--metarhodopsin II equilibrium. , 1974, Biochemistry.

[39]  D. Baylor,et al.  Rapid charge movements and photosensitivity of visual pigments in salamander rods and cones. , 1991, The Journal of physiology.

[40]  S. Zamenhof Methods and Instruments for the Selective Irradiation of Chromatin , 1943 .

[41]  J. Nathans,et al.  Production of bovine rhodopsin by mammalian cell lines expressing cloned cDNA: Spectrophotometry and subcellular localization , 1989, Vision Research.

[42]  J. Nathans,et al.  Rhodopsin activation: effects on the metarhodopsin I-metarhodopsin II equilibrium of neutralization or introduction of charged amino acids within putative transmembrane segments. , 1993, Biochemistry.

[43]  D. Oprian,et al.  Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. , 1992, Biochemistry.

[44]  K. Rothschild,et al.  Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. , 1993, Biochemistry.

[45]  S. Hestrin,et al.  Activation kinetics of retinal cones and rods: response to intense flashes of light , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  A. Kropf Intramolecular energy transfer in rhodopsin. , 1967, Vision research.

[47]  E N Pugh,et al.  Rushton's paradox: rod dark adaptation after flash photolysis. , 1975, The Journal of physiology.

[48]  L. P. Murray,et al.  The nature of the primary photochemical events in rhodopsin and isorhodopsin. , 1988, Biophysical journal.

[49]  M W Berns,et al.  Laser microsurgery in cell and developmental biology. , 1981, Science.

[50]  T. Thorgeirsson,et al.  Photolysis intermediates of human rhodopsin. , 1991, Biochemistry.

[51]  H. Edgerton,et al.  Duration and Peak Candlepower of Some Electronic Flashlamps , 1954 .

[52]  K. Fahmy,et al.  A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. , 1994, The Journal of biological chemistry.

[53]  M. Montal,et al.  Rhodopsin in model membranes: charge displacements in interfacial layers. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[54]  A. Hardy,et al.  Correction of slit-width errors , 1949 .

[55]  T. Ebrey The thermal decay of the intermediates of rhodopsin in situ. , 1968, Vision research.

[56]  M. Gusinow Effective blackbody temperature of high‐current gas‐filled flashlamps , 1973 .

[57]  M. Lindau,et al.  On the origin and the signal-shaping mechanism of the fast photosignal in the vertebrate retina. , 1982, Biophysical journal.

[58]  R. Rando,et al.  Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Paul De Weer,et al.  Optical methods in cell physiology , 1986 .