Improving robot vision models for object detection through interaction

We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.

[1]  Jochen Triesch,et al.  Semi-autonomous Learning of Objects , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[2]  Mark H. Johnson,et al.  Processes of change in brain and cognitive development , 2005, Trends in Cognitive Sciences.

[3]  Jürgen Leitner,et al.  MT-CGP: mixed type cartesian genetic programming , 2012, GECCO '12.

[4]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[5]  Giorgio Metta,et al.  Better Vision through Manipulation , 2003, Adapt. Behav..

[6]  Dario Izzo,et al.  The Generalized Island Model , 2012, Parallel Architectures and Bioinspired Algorithms.

[7]  Giulio Sandini,et al.  The iCub humanoid robot: An open-systems platform for research in cognitive development , 2010, Neural Networks.

[8]  Jürgen Leitner,et al.  A benchmark on stereo disparity estimation for humanoid robots , 2008 .

[9]  Jürgen Leitner,et al.  Mars terrain image classification using Cartesian genetic programming , 2012 .

[10]  Jürgen Leitner,et al.  An Integrated, Modular Framework for Computer Vision and Cognitive Robotics Research (icVision) , 2012, BICA.

[11]  Julian Francis Miller,et al.  Redundancy and computational efficiency in Cartesian genetic programming , 2006, IEEE Transactions on Evolutionary Computation.

[12]  Simon Handley,et al.  Automated Learning of a Detector for alpha-Helices in Protein Sequences via Genetic Programming , 1993, ICGA.

[13]  Rüdiger Dillmann,et al.  Towards shape-based visual object categorization for humanoid robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  Julian Francis Miller,et al.  Cartesian genetic programming , 2000, GECCO '10.

[15]  Tamim Asfour,et al.  Autonomous acquisition of visual multi-view object representations for object recognition on a humanoid robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[16]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[17]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[18]  Tsai-Yen Li,et al.  An incremental learning approach to motion planning with roadmap management , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  Stefan Schaal,et al.  Learning to Control in Operational Space , 2008, Int. J. Robotics Res..

[20]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[21]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[22]  Jürgen Leitner,et al.  Cartesian Genetic Programming for Image Processing , 2013 .

[23]  Nikolaos G. Tsagarakis,et al.  iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research , 2007, Adv. Robotics.

[24]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[25]  Jürgen Leitner,et al.  Transferring spatial perception between robots operating in a shared workspace , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.

[27]  Tamim Asfour,et al.  Simultaneous Grasp and Motion Planning: Humanoid Robot ARMAR-III , 2012, IEEE Robotics & Automation Magazine.

[28]  J. Miller An empirical study of the efficiency of learning boolean functions using a Cartesian Genetic Programming approach , 1999 .

[29]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[30]  V. Gullapalli,et al.  Visual Information and Object Size in the Control of Reaching. , 1996, Journal of motor behavior.

[31]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[32]  T. Martin McGinnity,et al.  Online unsupervised cumulative learning for life-long robot operation , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[33]  Jun Morimoto,et al.  Segmentation and learning of unknown objects through physical interaction , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[34]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[35]  Jürgen Leitner,et al.  Humanoid learns to detect its own hands , 2013, 2013 IEEE Congress on Evolutionary Computation.

[36]  Olivier Stasse,et al.  Treasure hunting for humanoids robot , 2008, Humanoids 2008.

[37]  Jürgen Leitner,et al.  Autonomous learning of robust visual object detection and identification on a humanoid , 2012, 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL).

[38]  Julian Francis Miller,et al.  Cartesian genetic programming , 2010, GECCO.