A Multilevel Iterative Field Solver for Implicit, Kinetic, Plasma Simulation

The equation for electrostatic potential which arises from the implicit moment method in plasma simulation is a nonsymmetric elliptic equation. We present results using a simple multigrid method as a preconditioner to General Minimum RESidual (GMRES) to iteratively solve this nonsymmetric elliptic equation in two dimensions. It is demonstrated that a simple multigrid method produces an effective preconditioner. It is also demonstrated that under some conditions the required number of linear iterations is independent of grid dimension. Results are presented for both uniform and nonuniform grid problems.

[1]  Multilevel Minimal Residual Methods for Nonsymmetric Elliptic Problems , 1996 .

[2]  G. Raithby,et al.  A multigrid method based on the additive correction strategy , 1986 .

[3]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[4]  J. Brackbill,et al.  A numerical method for suspension flow , 1991 .

[5]  Jeremiah Brackbill,et al.  An implicit method for electromagnetic plasma simulation in two dimensions , 1982 .

[6]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[7]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[8]  R. A. Plumb,et al.  The Zonally Averaged Transport Characteristics of the GFDL General Circulation/Transport Model , 1987 .

[9]  S. Ashby,et al.  A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations , 1996 .

[10]  G. J Pert Physical Constraints in Numerical Calculations of Diffusion , 1981 .

[11]  Khalid Aziz,et al.  A Generalization of the Additive Correction Methods for the Iterative Solution of Matrix Equations , 1973 .

[12]  Dennis W. Hewett,et al.  Solution of simultaneous partial differential equations using dynamic ADI: Solution of the streamlined Darwin field equations , 1992 .

[13]  Cornelis W. Oosterlee,et al.  An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..

[14]  J. U. Brackbill,et al.  CELEST1D: an implicit, fully kinetic model for low-frequency, electromagnetic plasma simulation , 1992 .

[15]  J. Dendy Black box multigrid , 1982 .

[16]  William J. Rider,et al.  Accurate solution algorithms for incompressible multiphase flows , 1995 .

[17]  P. Pritchett,et al.  Three‐dimensional stability of thin quasi‐neutral current sheets , 1996 .

[18]  C. Goldstein Preconditioning convection dominated convection‐diffusion problems , 1995 .

[19]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[20]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .

[21]  D. Hewett,et al.  Electromagnetic direct implicit plasma simulation , 1987 .

[22]  William J. Rider,et al.  A Multigrid Preconditioned Newton-Krylov Method , 1999, SIAM J. Sci. Comput..

[23]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[24]  Juan C. Meza,et al.  A Multigrid Preconditioner for the Semiconductor Equations , 1996, SIAM J. Sci. Comput..

[25]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[26]  John N. Shadid,et al.  A Comparison of Preconditioned Nonsymmetric Krylov Methods on a Large-Scale MIMD Machine , 1994, SIAM J. Sci. Comput..

[27]  Dana A. Knoll,et al.  Fully coupled finite volume solutions of the incompressible Navier–Stokes and energy equations using an inexact Newton method , 1994 .

[28]  P. Wesseling An Introduction to Multigrid Methods , 1992 .