Is fat the future for saving sight? Bioactive lipids and their impact on glaucoma.

[1]  Pei-Kang Liu,et al.  Vitamin B3 Provides Neuroprotection via Antioxidative Stress in a Rat Model of Anterior Ischemic Optic Neuropathy , 2022, Antioxidants.

[2]  H. Haniu,et al.  Lysophospholipids: A Potential Drug Candidates for Neurodegenerative Disorders , 2022, Biomedicines.

[3]  S. Kales,et al.  ACE-Vitamin Index and Risk of Glaucoma: The SUN Project , 2022, Nutrients.

[4]  S. Majumdar,et al.  Cannabidiol Loaded Topical Ophthalmic Nanoemulsion Lowers Intraocular Pressure in Normotensive Dutch-Belted Rabbits , 2022, Pharmaceutics.

[5]  M. Ansari,et al.  Resolvins Lipid Mediators: Potential Therapeutic Targets in Alzheimer and Parkinson Disease , 2022, Neuroscience.

[6]  L. Tong,et al.  Topical Omega-3 Fatty Acids Eyedrops in the Treatment of Dry Eye and Ocular Surface Disease: A Systematic Review , 2022, International journal of molecular sciences.

[7]  F. Tovar-Moll,et al.  Age-linked suppression of lipoxin A4 associates with cognitive deficits in mice and humans , 2022, Translational Psychiatry.

[8]  Y. Koutalos,et al.  Sphingomyelinases in retinas and optic nerve heads: Effects of ocular hypertension and ischemia. , 2022, Experimental eye research.

[9]  G. Gigli,et al.  Specialized Pro-Resolving Mediators in Neuroinflammation: Overview of Studies and Perspectives of Clinical Applications , 2022, Molecules.

[10]  Lieliang Zhang,et al.  Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases , 2022, Cell & bioscience.

[11]  J. Vehof,et al.  Topical glaucoma medications - Clinical implications for the ocular surface. , 2022, The ocular surface.

[12]  P. Giussani,et al.  Ceramide and Sphingosine-1-Phosphate in Neurodegenerative Disorders and Their Potential Involvement in Therapy , 2022, International journal of molecular sciences.

[13]  M. Hanna,et al.  B Vitamins: Functions and Uses in Medicine. , 2022, The Permanente journal.

[14]  A. Bukhari,et al.  Effect of retinol and α-tocopherol supplementation on photoreceptor and retinal ganglion cell apoptosis in diabetic rats model , 2022, International Journal of Retina and Vitreous.

[15]  N. Mercuri,et al.  Lipidomics of Bioactive Lipids in Alzheimer’s and Parkinson’s Diseases: Where Are We? , 2022, International journal of molecular sciences.

[16]  P. Koulen,et al.  Molecular Mechanisms Underlying the Therapeutic Role of Vitamin E in Age-Related Macular Degeneration , 2022, Frontiers in Neuroscience.

[17]  M. Tanito,et al.  Efficacy and Patient Tolerability of Omidenepag Isopropyl in the Treatment of Glaucoma and Ocular Hypertension , 2022, Clinical ophthalmology.

[18]  M. Hachem,et al.  Emerging Role of Phospholipids and Lysophospholipids for Improving Brain Docosahexaenoic Acid as Potential Preventive and Therapeutic Strategies for Neurological Diseases , 2022, International journal of molecular sciences.

[19]  H. Ryu,et al.  Nicotinamide (niacin) supplement increases lipid metabolism and ROS‐induced energy disruption in triple‐negative breast cancer: potential for drug repositioning as an anti‐tumor agent , 2022, Molecular oncology.

[20]  A. Horwitz,et al.  Glucagon-Like Peptide 1 Receptor Agonists – Potential Game Changers in the Treatment of Glaucoma? , 2022, Frontiers in Neuroscience.

[21]  Alfred L. Fisher,et al.  Role of Specialized Pro-resolving Mediators in Reducing Neuroinflammation in Neurodegenerative Disorders , 2022, Frontiers in Aging Neuroscience.

[22]  Xiaowei Fu,et al.  Vitamin intake and glaucoma risk: A systematic review and meta-analysis. , 2022, Journal francais d'ophtalmologie.

[23]  George Ayoub,et al.  Neuroprotection of retinal ganglion cells in vivo using the activation of the endogenous cannabinoid signaling system in mammalian eyes , 2022, Neuronal signaling.

[24]  D. Glavač,et al.  The Role of Vitamin A in Retinal Diseases , 2022, International journal of molecular sciences.

[25]  J. Wiggs,et al.  The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities‐A review , 2022, Clinical & experimental ophthalmology.

[26]  J. Hert,et al.  Synthesis, Characterization, and in vivo Evaluation of a Novel Potent Autotaxin-Inhibitor , 2022, Frontiers in Pharmacology.

[27]  J. Liebmann,et al.  Nicotinamide and Pyruvate for Neuroenhancement in Open-Angle Glaucoma: A Phase 2 Randomized Clinical Trial. , 2021, JAMA ophthalmology.

[28]  A. Galor,et al.  Meibum sphingolipid composition is altered in individuals with meibomian gland dysfunction-a side by side comparison of Meibum and Tear Sphingolipids. , 2021, The ocular surface.

[29]  Sifan Zheng,et al.  Circulating Fatty Acids And Risk Of Primary Open-Angle Glaucoma: A Mendelian Randomization Study. , 2021, Gene.

[30]  M. Tanito Reported evidence of vitamin E protection against cataract and glaucoma. , 2021, Free radical biology & medicine.

[31]  H. Steinbusch,et al.  The Role of Vitamins in Neurodegenerative Disease: An Update , 2021, Biomedicines.

[32]  E. Egom,et al.  Updates on sphingolipids: Spotlight on retinopathy. , 2021, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[33]  V. R. Bitra,et al.  Potentiation of microglial endocannabinoid signaling alleviates neuroinflammation in Alzheimer's disease , 2021, Neuropeptides.

[34]  R. Weinreb,et al.  Association of serum retinol concentration with normal-tension glaucoma , 2021, Eye.

[35]  F. Oddone,et al.  Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention , 2021, International journal of molecular sciences.

[36]  M. Sergeeva,et al.  Targeted Lipidomic Analysis of Aqueous Humor Reveals Signaling Lipid-Mediated Pathways in Primary Open-Angle Glaucoma , 2021, Biology.

[37]  D. Garway-Heath,et al.  Neuroprotection in Glaucoma: NAD+/NADH Redox State as a Potential Biomarker and Therapeutic Target , 2021, Cells.

[38]  J. Walia,et al.  A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis , 2021, International journal of molecular sciences.

[39]  Sumiko Watanabe,et al.  Neuroprotective role of sphingolipid rheostat in excitotoxic retinal ganglion cell death. , 2021, Experimental eye research.

[40]  C. O'brien,et al.  The lysophosphatidic acid axis in fibrosis: Implications for glaucoma , 2021, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[41]  P. van Wijngaarden,et al.  Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets , 2021, Frontiers in Neurology.

[42]  L. Arnould,et al.  Plasma fatty acids and primary open-angle glaucoma in the elderly: the Montrachet population-based study , 2021, BMC Ophthalmology.

[43]  M. Aihara,et al.  Effects of topical TGF-β1, TGF-β2, ATX, and LPA on IOP elevation and regulation of the conventional aqueous humor outflow pathway , 2021, Molecular vision.

[44]  R. Asaoka,et al.  Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes , 2021, Scientific reports.

[45]  C. Pedraza,et al.  Chronic central modulation of LPA/LPA receptors-signaling pathway in the mouse brain regulates cognition, emotion, and hippocampal neurogenesis , 2020, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[46]  C. Baudouin,et al.  Inflammation in Glaucoma: From the back to the front of the eye, and beyond , 2020, Progress in Retinal and Eye Research.

[47]  J. Vranka,et al.  Normal and glaucomatous outflow regulation , 2020, Progress in Retinal and Eye Research.

[48]  Roberto Fernández,et al.  Comparative lipidomic analysis of mammalian retinal ganglion cells and Müller glia in situ and in vitro using High-Resolution Imaging Mass Spectrometry , 2020, Scientific Reports.

[49]  E. Birgbauer Lysophosphatidic Acid Signalling in Nervous System Development and Function , 2020, NeuroMolecular Medicine.

[50]  James R. Tribble,et al.  Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction , 2020, bioRxiv.

[51]  C. Nucci,et al.  Natural Products: Evidence for Neuroprotection to Be Exploited in Glaucoma , 2020, Nutrients.

[52]  C. Traverso,et al.  Neuroinflammation in Primary Open-Angle Glaucoma , 2020, Journal of clinical medicine.

[53]  M. Malamas,et al.  Endocannabinoid metabolism and transport as targets to regulate intraocular pressure. , 2020, Experimental eye research.

[54]  N. Rotstein,et al.  Sphingolipids as critical players in retinal physiology and pathology , 2020, Journal of lipid research.

[55]  T. Harada,et al.  Suppression of Oxidative Stress as Potential Therapeutic Approach for Normal Tension Glaucoma , 2020, Antioxidants.

[56]  N. Bazan,et al.  Increased Antioxidant Capacity and Pro-Homeostatic Lipid Mediators in Ocular Hypertension—A Human Experimental Model , 2020, Journal of clinical medicine.

[57]  H. Tanihara,et al.  RhoA Activation Decreases Phagocytosis of Trabecular Meshwork Cells , 2020, Current eye research.

[58]  Pete A. Williams,et al.  Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: A crossover randomized clinical trial , 2020, Clinical and Experimental Ophthalmology.

[59]  M. Kolko,et al.  Current Medical Therapy and Future Trends in the Management of Glaucoma Treatment , 2020, Journal of ophthalmology.

[60]  M. Maccarrone,et al.  Bioactive lipids, inflammation and chronic diseases. , 2020, Advanced drug delivery reviews.

[61]  Yin Zhao,et al.  The Effect of Dietary Vitamin K1 Supplementation on Trabecular Meshwork and Retina in a Chronic Ocular Hypertensive Rat Model , 2020, Investigative ophthalmology & visual science.

[62]  A. White,et al.  Low systemic vitamin D as a potential risk factor in primary open-angle glaucoma: a review of current evidence , 2020, British Journal of Ophthalmology.

[63]  S. Bhattacharya,et al.  Alteration in Lysophospholipids and Converting Enzymes in Glaucomatous Optic Nerves , 2020, Investigative ophthalmology & visual science.

[64]  M. Kurano,et al.  Involvement of autotaxin in the pathophysiology of elevated intraocular pressure in Posner-Schlossman syndrome , 2020, Scientific Reports.

[65]  R. Lee,et al.  Endogenous ocular lipids as potential modulators of intraocular pressure , 2020, Journal of cellular and molecular medicine.

[66]  P. Mattei,et al.  Role of the autotaxin-lysophosphatidic acid axis in glaucoma, aqueous humor drainage and fibrogenic activity. , 2020, Biochimica et biophysica acta. Molecular basis of disease.

[67]  Sueko M Ng,et al.  Omega-3 and omega-6 polyunsaturated fatty acids for dry eye disease. , 2019, The Cochrane database of systematic reviews.

[68]  J. Sivak,et al.  Fairweather Friends: Evidence of Lipoxin Dysregulation in Neurodegeneration. , 2019, Molecular nutrition & food research.

[69]  D. Centonze,et al.  Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction , 2019, Haematologica.

[70]  Z. Yin,et al.  Lipoxin A4 delays the progression of retinal degeneration via the inhibition of microglial overactivation. , 2019, Biochemical and biophysical research communications.

[71]  Minbin Yu,et al.  Inhibition of LPA1 Signaling Impedes Conversion of Human Tenon's Fibroblasts into Myofibroblasts Via Suppressing TGF-β/Smad2/3 Signaling. , 2019, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[72]  Xuanchu Duan,et al.  Efficacy and safety of prostaglandin analogues in primary open-angle glaucoma or ocular hypertension patients , 2019, Medicine.

[73]  C. Kim,et al.  Meibomian gland dropout rate as a method to assess meibomian gland morphologic changes during use of preservative-containing or preservative-free topical prostaglandin analogues , 2019, PloS one.

[74]  Facundo H. Prado Spalm,et al.  Sphingolipids as Emerging Mediators in Retina Degeneration , 2019, Front. Cell. Neurosci..

[75]  D. Milea,et al.  Nicotinamide Deficiency in Primary Open-Angle Glaucoma. , 2019, Investigative ophthalmology & visual science.

[76]  S. Marrink,et al.  Ceramides bind VDAC2 to trigger mitochondrial apoptosis , 2019, Nature Communications.

[77]  S. Bhattacharya,et al.  Optic Nerve Lipidomics Reveal Impaired Glucosylsphingosine Lipids Pathway in Glaucoma , 2019, Investigative ophthalmology & visual science.

[78]  J. Auwerx,et al.  Niacin: an old lipid drug in a new NAD+ dress , 2019, Journal of Lipid Research.

[79]  M. Tanito,et al.  Comprehensive measurements of hydroxylinoleate and hydroxyarachidonate isomers in blood samples from primary open-angle glaucoma patients and controls , 2019, Scientific Reports.

[80]  A. Ibrahim,et al.  Bioactive lipids and pathological retinal angiogenesis , 2018, British journal of pharmacology.

[81]  K. Mondal,et al.  Role of Bioactive Sphingolipids in Inflammation and Eye Diseases. , 2019, Advances in experimental medicine and biology.

[82]  H. Bradshaw,et al.  Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Regulate Intraocular Pressure , 2018, Investigative ophthalmology & visual science.

[83]  R. Vohra,et al.  Neuroprotection of the inner retina: Müller cells and lactate , 2018, Neural regeneration research.

[84]  Joan C Domingo Pedrol,et al.  Effects of Oral Supplementation with Docosahexaenoic Acid (DHA) plus Antioxidants in Pseudoexfoliative Glaucoma: A 6-Month Open-Label Randomized Trial , 2018, Journal of ophthalmology.

[85]  M. Kurano,et al.  Increased aqueous autotaxin and lysophosphatidic acid levels are potential prognostic factors after trabeculectomy in different types of glaucoma , 2018, Scientific Reports.

[86]  D. Inman,et al.  Changes in ganglioside GM1 expression in glaucomic retina , 2018, Journal of neuroscience research.

[87]  S. Joachim,et al.  Autotaxin protects retinal ganglion cells in an autoimmune glaucoma model , 2018 .

[88]  Charles N Serhan,et al.  Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. , 2018, Journal of Clinical Investigation.

[89]  N. Skiba,et al.  Lysophosphatidic Acid Induces ECM Production via Activation of the Mechanosensitive YAP/TAZ Transcriptional Pathway in Trabecular Meshwork Cells , 2018, Investigative ophthalmology & visual science.

[90]  J. Schouten,et al.  The Effect of Vitamins on Glaucoma: A Systematic Review and Meta-Analysis , 2018, Nutrients.

[91]  R. Weinreb,et al.  Autotaxin-Lysophosphatidic Acid Pathway in Intraocular Pressure Regulation and Glaucoma Subtypes. , 2018, Investigative ophthalmology & visual science.

[92]  A. Coleman,et al.  Association of Dietary Fatty Acid Intake With Glaucoma in the United States , 2017, JAMA ophthalmology.

[93]  M. Maccarrone,et al.  Neuroprotection by (Endo)Cannabinoids in Glaucoma and Retinal Neurodegenerative Diseases , 2017, Current neuropharmacology.

[94]  G. Coppola,et al.  Citicoline and Retinal Ganglion Cells: Effects on Morphology and Function , 2017, Current neuropharmacology.

[95]  Peter T. Chang,et al.  Trabeculectomy: A Brief History and Review of Current Trends , 2018, International ophthalmology clinics.

[96]  M. Kurano,et al.  Role of the Autotaxin-LPA Pathway in Dexamethasone-Induced Fibrotic Responses and Extracellular Matrix Production in Human Trabecular Meshwork Cells. , 2018, Investigative ophthalmology & visual science.

[97]  J. Sivak,et al.  Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury , 2017, The Journal of clinical investigation.

[98]  L. Moons,et al.  Mitochondrial function in Müller cells - Does it matter? , 2017, Mitochondrion.

[99]  Haogang Zhu,et al.  Systemic PTEN-Akt1-mTOR pathway activity in patients with normal tension glaucoma and ocular hypertension: A case series. , 2017, Mitochondrion.

[100]  L. Rasmussen,et al.  Disturbed mitochondrial function restricts glutamate uptake in the human Müller glia cell line, MIO-M1. , 2017, Mitochondrion.

[101]  K. Tsubota,et al.  TFOS DEWS II Definition and Classification Report. , 2017, The ocular surface.

[102]  Xinghuai Sun,et al.  Lack of Association between Serum Vitamin B6, Vitamin B12, and Vitamin D Levels with Different Types of Glaucoma: A Systematic Review and Meta-Analysis , 2017, Nutrients.

[103]  J. Flammer,et al.  The discovery of the Flammer syndrome: a historical and personal perspective , 2017, EPMA Journal.

[104]  M. Walter,et al.  Prostaglandins in the eye: Function, expression, and roles in glaucoma , 2017, Ophthalmic genetics.

[105]  C. Serhan,et al.  Identification and Profiling of Specialized Pro-Resolving Mediators in Human Tears by Lipid Mediator Metabolomics. , 2017, Prostaglandins, leukotrienes, and essential fatty acids.

[106]  J. Jeppesen,et al.  Antihypertensive Medication Postpones the Onset of Glaucoma: Evidence From a Nationwide Study , 2017, Hypertension.

[107]  N. Skiba,et al.  Growth Differentiation Factor-15–Induced Contractile Activity and Extracellular Matrix Production in Human Trabecular Meshwork Cells , 2016, Investigative ophthalmology & visual science.

[108]  J. Karakaya,et al.  The Association of Chronic Topical Prostaglandin Analog Use With Meibomian Gland Dysfunction , 2016, Journal of glaucoma.

[109]  L. Bergersen,et al.  Glia-Neuron Interactions in the Retina Can Be Studied in Cocultures of Müller Cells and Retinal Ganglion Cells , 2016, BioMed research international.

[110]  Q. Le,et al.  Vitamin A Palmitate and Carbomer Gel Protects the Conjunctiva of Patients With Long-term Prostaglandin Analogs Application , 2016, Journal of glaucoma.

[111]  S. O'Sullivan,et al.  An update on PPAR activation by cannabinoids , 2016, British journal of pharmacology.

[112]  L. Rasmussen,et al.  Oxidative Stress-Induced Dysfunction of Müller Cells During Starvation. , 2016, Investigative ophthalmology & visual science.

[113]  A. Galor,et al.  ω-3 Tear Film Lipids Correlate With Clinical Measures of Dry Eye , 2016, Investigative ophthalmology & visual science.

[114]  J. Téllez-Vázquez Omega-3 fatty acid supplementation improves dry eye symptoms in patients with glaucoma: results of a prospective multicenter study , 2016, Clinical ophthalmology.

[115]  Tomohiro Kato,et al.  Bimatoprost, latanoprost, and tafluprost induce differential expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases , 2016, BMC Ophthalmology.

[116]  Elena Vecino,et al.  Glia–neuron interactions in the mammalian retina , 2016, Progress in Retinal and Eye Research.

[117]  W. Baldridge,et al.  The Endocannabinoid System as a Therapeutic Target in Glaucoma , 2016, Neural plasticity.

[118]  I. Gout,et al.  Resistance to the most common optic neuropathy is associated with systemic mitochondrial efficiency , 2015, Neurobiology of Disease.

[119]  U. Das,et al.  Low blood and vitreal BDNF, LXA4 and altered Th1/Th2 cytokine balance are potential risk factors for diabetic retinopathy. , 2015, Metabolism: clinical and experimental.

[120]  A. Chauhan,et al.  Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[121]  J. Jeppesen,et al.  The Prevalence and Incidence of Glaucoma in Denmark in a Fifteen Year Period: A Nationwide Study , 2015, PloS one.

[122]  B. Gong,et al.  Association of n3 and n6 polyunsaturated fatty acids in red blood cell membrane and plasma with severity of normal tension glaucoma. , 2015, International journal of ophthalmology.

[123]  M. Tanito,et al.  Correlation between Systemic Oxidative Stress and Intraocular Pressure Level , 2015, PloS one.

[124]  C. Serhan,et al.  The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. , 2015, Seminars in immunology.

[125]  B. Bengtsson,et al.  Threat to fixation at diagnosis and lifetime risk of visual impairment in open-angle glaucoma. , 2015, Ophthalmology.

[126]  Y. Yung,et al.  Lysophosphatidic acid signalling in development , 2015, Development.

[127]  J. Aoki,et al.  Lysophosphatidic acid as a lipid mediator with multiple biological actions. , 2015, Journal of biochemistry.

[128]  M. Iester,et al.  Evaluation of oxidative stress levels in the conjunctival epithelium of patients with or without dry eye, and dry eye patients treated with preservative-free hyaluronic acid 0.15 % and vitamin B12 eye drops , 2015, Graefe's Archive for Clinical and Experimental Ophthalmology.

[129]  T. Wong,et al.  Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. , 2014, Ophthalmology.

[130]  K. Adeli,et al.  Glucagon-like peptide-1 as a key regulator of lipid and lipoprotein metabolism in fasting and postprandial states. , 2014, Cardiovascular & hematological disorders drug targets.

[131]  Y. Yung,et al.  LPA receptor signaling: pharmacology, physiology, and pathophysiology , 2014, Journal of Lipid Research.

[132]  Charles N. Serhan,et al.  Pro-resolving lipid mediators are leads for resolution physiology , 2014, Nature.

[133]  S. Amor,et al.  Inflammation in neurodegenerative diseases – an update , 2014, Immunology.

[134]  F. Medeiros,et al.  The pathophysiology and treatment of glaucoma: a review. , 2014, JAMA.

[135]  H. Waagepetersen,et al.  Limited Energy Supply in Müller Cells Alters Glutamate Uptake , 2014, Neurochemical Research.

[136]  P. Grieb Neuroprotective Properties of Citicoline: Facts, Doubts and Unresolved Issues , 2014, CNS Drugs.

[137]  I. Baranowska-Bosiacka,et al.  Cyclooxygenase pathways. , 2014, Acta biochimica Polonica.

[138]  T. Palmer,et al.  Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1 , 2013, Cell Death and Disease.

[139]  B. Bengtsson,et al.  Lifetime risk of blindness in open-angle glaucoma. , 2013, American journal of ophthalmology.

[140]  Dong Wang,et al.  A randomized, double-masked study to evaluate the effect of omega-3 fatty acids supplementation in meibomian gland dysfunction , 2013, Clinical interventions in aging.

[141]  R. Vohra,et al.  The role of inflammation in the pathogenesis of glaucoma. , 2013, Survey of ophthalmology.

[142]  M. Pinazo-Durán,et al.  Patients undergoing long-term treatment with antihypertensive eye drops responded positively with respect to their ocular surface disorder to oral supplementation with antioxidants and essential fatty acids , 2013, Clinical interventions in aging.

[143]  M. Prins,et al.  An evidence-based review of prognostic factors for glaucomatous visual field progression. , 2013, Ophthalmology.

[144]  Sophia Y. Wang,et al.  Glaucoma and vitamins A, C, and E supplement intake and serum levels in a population-based sample of the United States , 2013, Eye.

[145]  M. Pinazo-Durán,et al.  Effects of a nutraceutical formulation based on the combination of antioxidants and ω-3 essential fatty acids in the expression of inflammation and immune response mediators in tears from patients with dry eye disorders , 2013, Clinical interventions in aging.

[146]  Xuejun Wen,et al.  Structure-activity relationship study of vitamin k derivatives yields highly potent neuroprotective agents. , 2013, Journal of medicinal chemistry.

[147]  Hong-Gang Wang,et al.  Sphingolipids: regulators of crosstalk between apoptosis and autophagy , 2013, Journal of Lipid Research.

[148]  C. Ciabattoni,et al.  In vivo confocal microscopy of meibomian glands in glaucoma , 2012, British Journal of Ophthalmology.

[149]  T. Keenan,et al.  Mapping the differential distribution of proteoglycan core proteins in the adult human retina, choroid, and sclera. , 2012, Investigative ophthalmology & visual science.

[150]  Robert A. Lalane,et al.  Autotaxin-Lysophosphatidic Acid Axis Is a Novel Molecular Target for Lowering Intraocular Pressure , 2012, PloS one.

[151]  Akhilesh Kumar,et al.  Effects of palmitoylethanolamide on aqueous humor outflow. , 2012, Investigative ophthalmology & visual science.

[152]  B. Fiebich,et al.  Role of Prostaglandins in Neuroinflammatory and Neurodegenerative Diseases , 2012, Mediators of inflammation.

[153]  A. Hofman,et al.  Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study , 2012, European Journal of Epidemiology.

[154]  E. Dennis,et al.  Essential Role of ELOVL4 Protein in Very Long Chain Fatty Acid Synthesis and Retinal Function* , 2011, The Journal of Biological Chemistry.

[155]  B. Hudson,et al.  Indirect Sympatholytic Actions at β-Adrenoceptors Account for the Ocular Hypotensive Actions of Cannabinoid Receptor Agonists , 2011, Journal of Pharmacology and Experimental Therapeutics.

[156]  Lawrence J. Marnett,et al.  Endocannabinoid Oxygenation by Cyclooxygenases, Lipoxygenases, and Cytochromes P450: Cross-Talk between the Eicosanoid and Endocannabinoid Signaling Pathways , 2011, Chemical reviews.

[157]  M. Cesarone,et al.  Ocular and optic nerve ischemia: recognition and treatment with intravenous prostaglandin E1. , 2011, Panminerva medica.

[158]  T. Keenan,et al.  Mapping the differential distribution of glycosaminoglycans in the adult human retina, choroid, and sclera. , 2011, Investigative ophthalmology & visual science.

[159]  M. Sakaue,et al.  Vitamin K has the potential to protect neurons from methylmercury‐induced cell death In Vitro , 2011, Journal of neuroscience research.

[160]  W. Stamer,et al.  The role of the prostaglandin EP4 receptor in the regulation of human outflow facility. , 2011, Investigative ophthalmology & visual science.

[161]  D. Epstein,et al.  Rho GTPase‐mediated cytoskeletal organization in Schlemm's canal cells play a critical role in the regulation of aqueous humor outflow facility , 2011, Journal of cellular biochemistry.

[162]  D. Kelley,et al.  Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. , 2010, The Journal of nutritional biochemistry.

[163]  P. Rao,et al.  Mechanistic Basis of Rho Gtpase-induced Extracellular Matrix Synthesis in Trabecular Meshwork Cells Running Head: Rho Gtpase-induced Cellular Contraction and Ecm Synthesis , 2022 .

[164]  C. Creuzot-Garcher,et al.  Red blood cell plasmalogens and docosahexaenoic acid are independently reduced in primary open-angle glaucoma. , 2009, Experimental eye research.

[165]  M. Tansey,et al.  Molecular Neurodegeneration BioMed Central Review , 2009 .

[166]  Song‐Pyo Hong,et al.  Resolvins E1 and D1 in choroid-retinal endothelial cells and leukocytes: biosynthesis and mechanisms of anti-inflammatory actions. , 2009, Investigative ophthalmology & visual science.

[167]  A. Clark,et al.  The role of steroids in outflow resistance. , 2009, Experimental eye research.

[168]  A. Di Polo,et al.  The role of lysophosphatidic acid receptor (LPA1) in the oxygen-induced retinal ganglion cell degeneration. , 2009, Investigative ophthalmology & visual science.

[169]  H. Hara,et al.  Docosahexaenoic acid (DHA) has neuroprotective effects against oxidative stress in retinal ganglion cells , 2009, Brain Research.

[170]  S. Sharma,et al.  Neuroprotectin D1 inhibits retinal ganglion cell death following axotomy. , 2008, Prostaglandins, leukotrienes, and essential fatty acids.

[171]  R. Simon,et al.  Stereo-selective neuroprotection against stroke with vitamin A derivatives , 2008, Brain Research.

[172]  P. Kaufman,et al.  Update on the mechanism of action of topical prostaglandins for intraocular pressure reduction. , 2008, Survey of ophthalmology.

[173]  S. Yazulla Endocannabinoids in the retina: From marijuana to neuroprotection , 2008, Progress in Retinal and Eye Research.

[174]  Robert N Weinreb,et al.  Prevalence of Ocular Surface Disease in Glaucoma Patients , 2008, Journal of glaucoma.

[175]  T. Acott,et al.  Extracellular matrix in the trabecular meshwork. , 2008, Experimental eye research.

[176]  C. Hann,et al.  Prostaglandins increase trabecular meshwork outflow facility in cultured human anterior segments. , 2008, American journal of ophthalmology.

[177]  S. Lipton,et al.  Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma. , 2008, Progress in brain research.

[178]  C. Creuzot-Garcher,et al.  The ocular surface of glaucoma patients treated over the long term expresses inflammatory markers related to both T-helper 1 and T-helper 2 pathways. , 2008, Ophthalmology.

[179]  M. Araie,et al.  Potential role of Rho-associated protein kinase inhibitor Y-27632 in glaucoma filtration surgery. , 2007, Investigative ophthalmology & visual science.

[180]  L. Wheeler,et al.  Bimatoprost, prostamide activity, and conventional drainage. , 2007, Investigative ophthalmology & visual science.

[181]  A. Terrinoni,et al.  Involvement of the endocannabinoid system in retinal damage after high intraocular pressure-induced ischemia in rats. , 2007, Investigative ophthalmology & visual science.

[182]  C. Camras,et al.  Effects of Travoprost on Aqueous Humor Dynamics in Patients With Elevated Intraocular Pressure , 2007, Journal of glaucoma.

[183]  W. Moolenaar,et al.  Regulation and biological activities of the autotaxin-LPA axis. , 2007, Progress in lipid research.

[184]  L. Wheeler,et al.  Levels of bimatoprost acid in the aqueous humour after bimatoprost treatment of patients with cataract , 2006, British Journal of Ophthalmology.

[185]  I. Rodriguez,et al.  Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. , 2006, Molecular vision.

[186]  R. Pertwee,et al.  Effect of Sublingual Application of Cannabinoids on Intraocular Pressure: A Pilot Study , 2006, Journal of glaucoma.

[187]  D. Epstein,et al.  Regulation of connective tissue growth factor expression in the aqueous humor outflow pathway. , 2006, Molecular vision.

[188]  H. Ren,et al.  Primary open-angle glaucoma patients have reduced levels of blood docosahexaenoic and eicosapentaenoic acids. , 2006, Prostaglandins, leukotrienes, and essential fatty acids.

[189]  I. Matias,et al.  Finding of endocannabinoids in human eye tissues: implications for glaucoma. , 2005, Biochemical and biophysical research communications.

[190]  H. Thieme,et al.  Stimulation of cannabinoid (CB1) and prostanoid (EP2) receptors opens BKCa channels and relaxes ocular trabecular meshwork. , 2005, Experimental eye research.

[191]  V. Parisi Electrophysiological Assessment of Glaucomatous Visual Dysfunction During Treatment with Cytidine-5′-diphosphocholine (citicoline): A Study of 8 years of Follow-up , 2005, Documenta Ophthalmologica.

[192]  J. Meza,et al.  Detection of the free acid of bimatoprost in aqueous humor samples from human eyes treated with bimatoprost before cataract surgery. , 2004, Ophthalmology.

[193]  C. Camras,et al.  Increase in outflow facility with unoprostone treatment in ocular hypertensive patients. , 2004, Archives of ophthalmology.

[194]  J. McLaren,et al.  Mechanism of ocular hypotensive action of bimatoprost (Lumigan) in patients with ocular hypertension or glaucoma. , 2004, Ophthalmology.

[195]  R. Breyer,et al.  Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. , 2004, Pharmacology & therapeutics.

[196]  Priyatham S. Mettu,et al.  Role of lysophospholipid growth factors in the modulation of aqueous humor outflow facility. , 2004, Investigative ophthalmology & visual science.

[197]  L. Bojić,et al.  Circulating platelet aggregates in glaucoma , 1998, International Ophthalmology.

[198]  N. D. Jong,et al.  Platelet aggregation, disc haemorrhage and progressive loss of visual fields in glaucoma , 1992, International Ophthalmology.

[199]  Hong Wang,et al.  Novel Role of Vitamin K in Preventing Oxidative Injury to Developing Oligodendrocytes and Neurons , 2003, The Journal of Neuroscience.

[200]  Philip C. Calder,et al.  n−3 Polyunsaturated fatty acids and inflammation: From molecular biology to the clinic , 2003, Lipids.

[201]  J. Crider,et al.  Human trabecular meshwork cell responses induced by bimatoprost, travoprost, unoprostone, and other FP prostaglandin receptor agonist analogues. , 2003, Investigative ophthalmology & visual science.

[202]  S. Podos,et al.  Effect of WIN 55212-2, a cannabinoid receptor agonist, on aqueous humor dynamics in monkeys. , 2003, Archives of ophthalmology.

[203]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[204]  B. Hinz,et al.  Myofibroblasts and mechano-regulation of connective tissue remodelling , 2002, Nature Reviews Molecular Cell Biology.

[205]  M. Dana,et al.  Role of immunity and inflammation in corneal and ocular surface disease associated with dry eye. , 2002, Advances in experimental medicine and biology.

[206]  R. Noecker,et al.  Cannabinoid CB(1) receptor expression, activation and detection of endogenous ligand in trabecular meshwork and ciliary process tissues. , 2001, European journal of pharmacology.

[207]  U. Schlötzer-Schrehardt,et al.  Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes. , 2001, Investigative ophthalmology & visual science.

[208]  G. Gessa,et al.  The synthetic cannabinoid WIN55212‐2 decreases the intraocular pressure in human glaucoma resistant to conventional therapies , 2001, The European journal of neuroscience.

[209]  J. Chambers,et al.  The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1) , 2000, British journal of pharmacology.

[210]  Z. H. Song,et al.  Involvement of cannabinoid receptors in the intraocular pressure-lowering effects of WIN55212-2. , 2000, The Journal of pharmacology and experimental therapeutics.

[211]  K. Mackie,et al.  Localization of cannabinoid CB1 receptors in the human anterior eye and retina. , 1999, Investigative ophthalmology & visual science.

[212]  P. Mangiafico,et al.  Fatty acid use in glaucomatous optic neuropathy treatment. , 2009, Acta ophthalmologica Scandinavica. Supplement.

[213]  A. Urtti,et al.  Effect of the CB1 receptor antagonist, SR141716A, on cannabinoid-induced ocular hypotension in normotensive rabbits. , 1998, Life sciences.

[214]  R. Weinreb,et al.  Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells. , 1997, Investigative ophthalmology & visual science.

[215]  R. Weinreb,et al.  Prostaglandins alter extracellular matrix adjacent to human ciliary muscle cells in vitro. , 1997, Investigative ophthalmology & visual science.

[216]  J. Regan,et al.  The molecular biology and ocular distribution of prostanoid receptors. , 1997, Survey of ophthalmology.

[217]  K. Tsubota,et al.  Effect of retinol palmitate as a treatment for dry eye: a cytological evaluation. , 1997, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[218]  P. Mitchell,et al.  Prevalence of open-angle glaucoma in Australia. The Blue Mountains Eye Study. , 1996, Ophthalmology.

[219]  A. James Fat-soluble vitamins , 1995, The Lancet.

[220]  A. Urtti,et al.  Ophthalmic arachidonylethanolamide decreases intraocular pressure in normotensive rabbits. , 1995, Current eye research.

[221]  P. Kulkarni,et al.  A comparative study between cod liver oil and liquid lard intake on intraocular pressure on rabbits. , 1992, Prostaglandins, leukotrienes, and essential fatty acids.

[222]  W. Gordon,et al.  Docosahexaenoic acid utilization during rod photoreceptor cell renewal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[223]  C. von Schacky,et al.  Long-term effects of dietary marine omega-3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans. , 1985, The Journal of clinical investigation.

[224]  P. Kulkarni,et al.  Prostaglandins E3 and D3 lower intraocular pressure. , 1985, Investigative ophthalmology & visual science.

[225]  C. R. Craig,et al.  Intraocular pressure, ocular toxicity and neurotoxicity after administration of delta 9-tetrahydrocannabinol or cannabichromene. , 1984, Experimental eye research.

[226]  J. Merritt,et al.  Topical Δ9‐Tetrahydrocannabinol and Aqueous Dynamics in Glaucoma , 1981 .

[227]  W. J. Crawford,et al.  Effect of marihuana on intraocular and blood pressure in glaucoma. , 1980, Ophthalmology.

[228]  K. Green,et al.  A comparison of topical cannabinoids on intraocular pressure. , 1978, Experimental eye research.

[229]  J. Gregg,et al.  Delta(9)-tetrahydrocannabinol,, euphoria and intraocular pressure in man. , 1975, Annals of ophthalmology.

[230]  R. Hepler,et al.  Marihuana smoking and intraocular pressure. , 1971, JAMA.