Robust methods in analysis of natural language data

The automated analysis of natural language data has become a central issue in the design of intelligent information systems. Processing unconstrained natural language data is still considered as an AI-hard task. However, various analysis techniques have been proposed to address specific aspects of natural language. In particular, recent interest has been focused on providing approximate analysis techniques, assuming that when perfect analysis is not possible, partial results may be still very useful.

[1]  J. Fodor,et al.  The structure of a semantic theory , 1963 .

[2]  R. Schvaneveldt,et al.  Facilitation in recognizing pairs of words: evidence of a dependence between retrieval operations. , 1971, Journal of experimental psychology.

[3]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[4]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[5]  Wietske Noordman-Vonk,et al.  Retrieval From Semantic Memory , 1977 .

[6]  William A. Woods,et al.  Semantics and Quantification in Natural Language Question Answering , 1986, Adv. Comput..

[7]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[8]  W. Kintsch,et al.  Strategies of discourse comprehension , 1983 .

[9]  Jerry R. Hobbs An improper Treatment of Quantification in Ordinary English , 1983, ACL.

[10]  Paul Kay,et al.  Three properties of the ideal reader , 1983 .

[11]  C. Fillmore,et al.  Regularity and Idiomaticity in Grammatical Constructions: The Case of Let Alone , 1988 .

[12]  Roger C. Schank,et al.  SCRIPTS, PLANS, GOALS, AND UNDERSTANDING , 1988 .

[13]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[14]  B. MacWhinney The CHILDES project: tools for analyzing talk , 1992 .

[15]  Steven Abney,et al.  Parsing By Chunks , 1991 .

[16]  Julian M. Kupiec,et al.  Robust part-of-speech tagging using a hidden Markov model , 1992 .

[17]  Richard M. Schwartz,et al.  Coping with Ambiguity and Unknown Words through Probabilistic Models , 1993, CL.

[18]  Karen Jensen PEG: The PLNLP English Grammar , 1993, Natural Language Processing.

[19]  Max Silberztein,et al.  Dictionnaires électroniques et analyse automatique de textes : le système intex , 1993 .

[20]  D. van der Ende Robust Parsing: An Overview , 1995 .

[21]  Miriam R. L. Petruck FRAME SEMANTICS , 1996 .

[22]  Mary P. Harper,et al.  Analysis of Unknown Lexical Items using Morphological and Syntactic Information with the TIMIT Corpus , 1997, VLC.

[23]  F. Segond,et al.  An Experiment in Semantic Tagging using Hidden Markov Model Tagging , 1997 .

[24]  João C. O. Matias,et al.  Edite - A Natural Language Interface to Databases A new dimension for an old approach , 1997 .

[25]  Andrei Mikheev,et al.  Automatic Rule Induction for Unknown-Word Guessing , 1997, CL.

[26]  Dan Flickinger,et al.  Minimal Recursion Semantics: An Introduction , 2005 .

[27]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[28]  Preslav Nakov BulStem: Design and Evaluation of Inflectional Stemmer for Bulgarian , 1998 .

[29]  Jiri Stetina CORPUS BASED NATURAL LANGUAGE AMBIGUITY RESOLUTION(コーパスに基づく自然言語における曖昧性の解消) , 1998 .

[30]  Carol Neidle,et al.  Lexical Functional Grammar , 1998 .

[31]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[32]  W. Kintsch The Representation of Knowledge in Minds and Machines , 1998 .

[33]  Helmut Schmid,et al.  Improvements in Part-of-Speech Tagging with an Application to German , 1999 .

[34]  G. Bès La phrase verbale noyau en français , 1999 .

[35]  David Yarowsky,et al.  Distinguishing systems and distinguishing senses: new evaluation methods for Word Sense Disambiguation , 1999, Natural Language Engineering.

[36]  Vimla L. Patel,et al.  The role of long-term working memory in text comprehension. , 1999 .

[37]  Munpyo Hong,et al.  Overcoming the Language Barriers in the Web: The UNL-Approach , 1999 .

[38]  Oren Etzioni,et al.  Grouper: A Dynamic Clustering Interface to Web Search Results , 1999, Comput. Networks.

[39]  Christian Boitet,et al.  On UNL as the future “html of the linguistic content” & the reuse of existing NLP components in UNL-related applications with the example of a UNL-French deconverter , 2000, COLING.

[40]  David Yarowsky,et al.  Minimally Supervised Morphological Analysis by Multimodal Alignment , 2000, ACL.

[41]  Albert,et al.  Topology of evolving networks: local events and universality , 2000, Physical review letters.

[42]  S. N. Dorogovtsev,et al.  Evolution of reference networks with aging , 2000, cond-mat/0001419.

[43]  Daniel Jurafsky,et al.  Knowledge-Free Induction of Morphology Using Latent Semantic Analysis , 2000, CoNLL/LLL.

[44]  James H. Martin,et al.  Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd Edition , 2000, Prentice Hall series in artificial intelligence.

[45]  UniversitySydneyDiego. Molla-Aliod Ontologically Promiscuous Flat Logical Forms for Nlp , 2000 .

[46]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[47]  Robert H. Baud,et al.  Minimal Commitment and Full Lexical Disambiguation: Balancing Rules and Hidden Markov Models , 2000, CoNLL/LLL.

[48]  Gabriel G. Bès,et al.  Properties in 5P , 2001 .

[49]  Tiago V. Maia,et al.  Learning Grammatical Constructions , 2001 .

[50]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[51]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[52]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[53]  Jason Baldridge,et al.  Coupling CCG and Hybrid Logic Dependency Semantics , 2002, ACL.

[54]  Ben Hutchinson,et al.  Dependency-based semantic interpretation for answer extraction , 2002 .

[55]  Claude Roux,et al.  A Robust and Flexible Platform for Dependency Extraction , 2002, LREC.

[56]  Jean-Pierre Chanod,et al.  Robustness beyond shallowness: incremental deep parsing , 2002, Natural Language Engineering.

[57]  Sanda M. Harabagiu,et al.  LCC Tools for Question Answering , 2002, TREC.

[58]  E. Paskaleva Compilation and validation of morphological resources ( overview of the morphology cooking technologies ) , 2003 .

[59]  Ellen M. Voorhees,et al.  Overview of TREC 2003. , 2003 .

[60]  Steffen Staab,et al.  WordNet improves text document clustering , 2003, SIGIR 2003.

[61]  Preslav Nakov,et al.  Guessing morphological classes of unknown German nouns , 2003, RANLP.

[62]  Fabio Rinaldi,et al.  ExtrAns: Extracting Answers from Technical Texts , 2003, IEEE Intell. Syst..

[63]  Aldo Gangemi,et al.  Ontology Learning and Its Application to Automated Terminology Translation , 2003, IEEE Intell. Syst..

[64]  Steffen Staab,et al.  Text Clustering Based on Background Knowledge , 2003 .

[65]  T. V. Geetha,et al.  UNL DECONVERTER FOR TAMIL , 2003 .

[66]  R. A. Redol JaVaLI!: understanding real questions∗ , 2003 .

[67]  Dell Zhang,et al.  Semantic, Hierarchical, Online Clustering of Web Search Results , 2004, APWeb.

[68]  Frank Keller,et al.  The Web as a Baseline: Evaluating the Performance of Unsupervised Web-based Models for a Range of NLP Tasks , 2004, NAACL.

[69]  Dimitar Kazakov,et al.  WordNet-based text document clustering , 2004 .

[70]  John Bryant Constructional Analysis , 2022 .