Plasmonic Metasurfaces for Nonlinear Optics and Quantitative SERS

Plasmonic metasurfaces consist of two-dimensional arrays of metallic nanoresonators (plasmonic “meta-atoms”), which exhibit collective and tunable resonance properties controlled by electromagnetic near-field coupling. These man-made surfaces can produce a range of unique optical properties unattainable with natural materials. In this review, we focus on the emerging applications of metasurfaces with precisely engineered plasmonic properties for nonlinear optics and surface-enhanced Raman spectroscopy (SERS). In practice, these applications are quite susceptible to material losses and structural imperfections, such as variations in size, shape, periodicity of meta-atoms, and their material states (crystallinity, impurity, and oxidation, etc.). In these aspects, conventional top-down lithographic techniques are facing major challenges due to inherent limitations in intrinsic material properties and material quality introduced during growth, synthesis, and fabrication processes, as well as achievable lithog...

[1]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[2]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[3]  M. Betz,et al.  Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces. , 2010, Physical review letters.

[4]  Charles T. Rogers,et al.  Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum , 2004 .

[5]  G. Whitesides,et al.  Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates. , 2008, Nano letters.

[6]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[7]  Simon Rivier,et al.  Enhanced second-harmonic generation from double resonant plasmonic antennae. , 2012, Optics express.

[8]  R. Olmon,et al.  Optical dielectric function of gold , 2012 .

[9]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[10]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[11]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[12]  U. Jeng,et al.  Mesostructured Arrays of Nanometer‐spaced Gold Nanoparticles for Ultrahigh Number Density of SERS Hot Spots , 2014 .

[13]  V. Valev,et al.  Characterization of nanostructured plasmonic surfaces with second harmonic generation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[14]  D. R. Chowdhury,et al.  Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales , 2015 .

[15]  Lei Zhou,et al.  Nonlinear responses in optical metamaterials: theory and experiment. , 2011, Optics express.

[16]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[17]  S. Bell,et al.  Quantitative surface-enhanced Raman spectroscopy. , 2008, Chemical Society reviews.

[18]  Naomi J Halas,et al.  Three-dimensional nanostructures as highly efficient generators of second harmonic light. , 2011, Nano letters.

[19]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[20]  Paras N. Prasad,et al.  Metaphotonics : An emerging field with opportunities and challenges , 2015 .

[21]  S. Gwo,et al.  Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties. , 2010, Journal of the American Chemical Society.

[22]  Harry A Atwater,et al.  Plasmonic color filters for CMOS image sensor applications. , 2012, Nano letters.

[23]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[24]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[25]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[26]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[27]  S. Majetich,et al.  Ultra-large-area self-assembled monolayers of nanoparticles. , 2011, ACS nano.

[28]  Shangjr Gwo,et al.  Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling. , 2008, Journal of the American Chemical Society.

[29]  Jürgen Popp,et al.  Towards a quantitative SERS approach – online monitoring of analytes in a microfluidic system with isotope‐edited internal standards , 2009, Journal of biophotonics.

[30]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[31]  Wayne Dickson,et al.  All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. , 2011, Nano letters.

[32]  David R. Smith,et al.  Large‐Area Metasurface Perfect Absorbers from Visible to Near‐Infrared , 2015, Advanced materials.

[33]  R. V. Van Duyne,et al.  A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. , 2007, Journal of the American Chemical Society.

[34]  P. Etchegoin,et al.  Quantifying SERS enhancements , 2013 .

[35]  H. Ehrenreich,et al.  Optical Properties of Aluminum , 1963 .

[36]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[37]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[38]  Guixin Li,et al.  University of Birmingham Continuous control of the nonlinearity phase for harmonic generations , 2015 .

[39]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[40]  Jianfang Wang,et al.  Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices , 2015, Nature Communications.

[41]  A. Tünnermann,et al.  Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. , 2015, Nano letters.

[42]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[43]  Peter Nordlander,et al.  Aluminum for plasmonics. , 2014, ACS nano.

[44]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[45]  M. Wegener,et al.  Second-Harmonic Generation from Magnetic Metamaterials , 2006, Science.

[46]  Jer‐Shing Huang,et al.  HNO₃-assisted polyol synthesis of ultralarge single-crystalline Ag microplates and their far propagation length of surface plasmon polariton. , 2014, ACS applied materials & interfaces.

[47]  P. Ray Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. , 2010, Chemical reviews.

[48]  Chih-Kang Shih,et al.  All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. , 2014, Nano letters.

[49]  Yuen-Ron Shen,et al.  Surface-enhanced Second-harmonic Generation , 1981 .

[50]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[51]  Mohsen Rahmani,et al.  University of Birmingham Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna , 2016 .

[52]  Janos Perczel,et al.  Visible-frequency hyperbolic metasurface , 2015, Nature.

[53]  Eric C Le Ru,et al.  Single-molecule surface-enhanced Raman spectroscopy. , 2012, Annual review of physical chemistry.

[54]  A. Alú,et al.  Enhanced Second-Harmonic Generation by Metasurface Nanomixer and Nanocavity , 2015 .

[55]  Xianji Piao,et al.  Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. , 2014, Nano letters.

[56]  Andrea Alù,et al.  Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver , 2013, Advanced materials.

[57]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[58]  N. V. van Hulst,et al.  Aluminum for nonlinear plasmonics: Resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[59]  Mohsen Rahmani,et al.  Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. , 2012, Nano letters.

[60]  M. Raschke,et al.  Optical dielectric function of silver , 2015 .

[61]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[62]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[63]  P. Kamat Photovoltaics: capturing hot electrons. , 2010, Nature chemistry.

[64]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[65]  Sang‐Hyun Oh,et al.  Single‐Crystalline Silver Films for Plasmonics , 2012, Advanced materials.

[66]  Wei Shen,et al.  Reliable Quantitative SERS Analysis Facilitated by Core-Shell Nanoparticles with Embedded Internal Standards. , 2015, Angewandte Chemie.

[67]  Tal Ellenbogen,et al.  Controlling light with metamaterial-based nonlinear photonic crystals , 2015, Nature Photonics.

[68]  T. Verbiest,et al.  Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook , 2013, Advanced materials.

[69]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[70]  J. Dionne,et al.  Localized fields, global impact: Industrial applications of resonant plasmonic materials , 2015 .

[71]  George C. Schatz,et al.  High-performance SERS substrates: Advances and challenges , 2013 .

[72]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[73]  U. Woggon,et al.  Nonlinear plasmon-photon interaction resolved by k-space spectroscopy. , 2012, Physical review letters.

[74]  Hyeyoung Ahn,et al.  Plasmonic green nanolaser based on a metal-oxide-semiconductor structure. , 2011, Nano letters.

[75]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[76]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[77]  Zhaoning Yu,et al.  Nonlinear optical spectroscopy of photonic metamaterials , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[78]  H. Ehrenreich,et al.  Optical Properties of Ag and Cu , 1962 .

[79]  J. Y. Lee,et al.  Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation. , 2012, Optics express.

[80]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[81]  Zi Jing Wong,et al.  Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials , 2013, Science.

[82]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[83]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[84]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[85]  O. Martin,et al.  Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications. , 2015, ACS nano.

[86]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[87]  Jun Chen,et al.  Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy. , 2013, Nano letters.

[88]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[89]  Yu-Ming Chang,et al.  Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. , 2015, Journal of the American Chemical Society.

[90]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[91]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[92]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[93]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[94]  Henry Ehrenreich,et al.  Optical Properties of Noble Metals. II. , 1965 .

[95]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[96]  Andrea R Tao,et al.  Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared , 2015, Nature Communications.

[97]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, Nature.

[98]  Nevière,et al.  Experimental study of surface-enhanced second-harmonic generation on silver gratings. , 1985, Physical review. B, Condensed matter.

[99]  H. Simon,et al.  Optical Second-Harmonic Generation with Surface Plasmons in Silver Films , 1974 .

[100]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[101]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[102]  Hyeyoung Ahn,et al.  Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics , 2015, Nature Communications.

[103]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[104]  Dana D. Dlott,et al.  Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering , 2008, Science.

[105]  S. Gwo,et al.  Intermediates in the cation reactions in solution probed by an in situ surface enhanced Raman scattering method , 2015, Scientific Reports.

[106]  P. Etchegoin,et al.  Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. , 2006, The journal of physical chemistry. B.

[107]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[108]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[109]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[110]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[111]  Alok P. Vasudev,et al.  Electrically Controlled Nonlinear Generation of Light with Plasmonics , 2011, Science.

[112]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.