Ensemble prediction using a new dataset of ECMWF initial states – OpenEnsemble 1.0

Abstract. Ensemble prediction is an indispensable tool of modern numerical weather prediction (NWP). Due to its complex data flow, global medium-range ensemble prediction has so far remained exclusively as a duty of operational weather agencies. It has been very hard for academia therefore to be able to contribute to this important branch of NWP research using realistic weather models. In order to open up the ensemble prediction research for a wider research community, we have recreated all 50+1 operational IFS ensemble initial states for OpenIFS CY43R3. The dataset (OpenEnsemble 1.0) is available for use under a Creative Commons license and is downloadable from an https-server. The dataset covers one year (December 2016 to November 2017) twice daily. Downloads in three model resolutions (TL159, TL399 and TL639) are available to cover different research needs. An open-source workflow manager, called OpenEPS, is presented here and used to launch ensemble forecast experiments from the perturbed initial conditions. The deterministic and probabilistic forecast skill of OpenIFS (cycle 40R1) using this new set of initial states is comprehensively evaluated. In addition, we present a case study of typhoon Damrey from year 2017 to illustrate the new potential of being able to run ensemble forecasts outside major global weather forecasting centres.