Comparative genomics and evolution of transcriptional regulons in Proteobacteria

Comparative genomics approaches are broadly used for analysis of transcriptional regulation in bacterial genomes. In this work, we identified binding sites and reconstructed regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes from 21 taxonomic groups of Proteobacteria. Overall, we predict over 10 600 TF binding sites and identified more than 15 600 target genes for 1896 TFs constituting the studied orthologous groups of regulators. These include a set of orthologues for 21 metabolism-associated TFs from Escherichia coli and/or Shewanella that are conserved in five or more taxonomic groups and several additional TFs that represent non-orthologous substitutions of the metabolic regulators in some lineages of Proteobacteria. By comparing gene contents of the reconstructed regulons, we identified the core, taxonomy-specific and genome-specific TF regulon members and classified them by their metabolic functions. Detailed analysis of ArgR, TyrR, TrpR, HutC, HypR and other amino-acid-specific regulons demonstrated remarkable differences in regulatory strategies used by various lineages of Proteobacteria. The obtained genomic collection of in silico reconstructed TF regulons contains a large number of new regulatory interactions that await future experimental validation. The collection provides a framework for future evolutionary studies of transcriptional regulatory networks in Bacteria. It can be also used for functional annotation of putative metabolic transporters and enzymes that are abundant in the reconstructed regulons.

[1]  D. Ravcheev,et al.  Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism , 2015, MicrobiologyOpen.

[2]  E. Torrents,et al.  Function of the Pseudomonas aeruginosa NrdR Transcription Factor: Global Transcriptomic Analysis and Its Role on Ribonucleotide Reductase Gene Expression , 2015, PloS one.

[3]  C. Patten,et al.  The TyrR Transcription Factor Regulates the Divergent akr-ipdC Operons of Enterobacter cloacae UW5 , 2015, PloS one.

[4]  Byung-Kwan Cho,et al.  The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli , 2015, Nucleic acids research.

[5]  V. Rubio,et al.  Ligand binding specificity of RutR, a member of the TetR family of transcription regulators in Escherichia coli , 2015, FEBS open bio.

[6]  Wei Liu,et al.  Proline metabolism and cancer: emerging links to glutamine and collagen , 2014, Current opinion in clinical nutrition and metabolic care.

[7]  M. Gelfand,et al.  Comparative Genomics of Transcriptional Regulation of Methionine Metabolism in Proteobacteria , 2014, PloS one.

[8]  M. A. Prieto,et al.  A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440. , 2014, International journal of biological macromolecules.

[9]  Mikhail S. Gelfand,et al.  Comparative genomics and evolution of regulons of the LacI-family transcription factors , 2014, Front. Microbiol..

[10]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[11]  William J. Riehl,et al.  RegPrecise 3.0 – A resource for genome-scale exploration of transcriptional regulation in bacteria , 2013, BMC Genomics.

[12]  Karsten Zengler,et al.  Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima , 2013, Front. Microbiol..

[13]  Zeliang Chen,et al.  Brucella BioR Regulator Defines a Complex Regulatory Mechanism for Bacterial Biotin Metabolism , 2013, Journal of bacteriology.

[14]  E. O. Ermakova,et al.  Genomic Reconstruction of the Transcriptional Regulatory Network in Bacillus subtilis , 2013, Journal of bacteriology.

[15]  Dmitry A Rodionov,et al.  Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria , 2013, BMC Genomics.

[16]  J. Mekalanos,et al.  MetR-Regulated Vibrio cholerae Metabolism Is Required for Virulence , 2012, mBio.

[17]  Philip Britz-McKibbin,et al.  Control of hydroxyproline catabolism in Sinorhizobium meliloti , 2012, Molecular microbiology.

[18]  Cuiqing Ma,et al.  Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa , 2012, Journal of bacteriology.

[19]  Andrei L Osterman,et al.  Control of Proteobacterial Central Carbon Metabolism by the HexR Transcriptional Regulator , 2011, The Journal of Biological Chemistry.

[20]  Inna Dubchak,et al.  Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus , 2011, BMC Genomics.

[21]  Matthew DeJongh,et al.  Inference of the Transcriptional Regulatory Network in Staphylococcus aureus by Integration of Experimental and Genomics-Based Evidence , 2011, Journal of bacteriology.

[22]  I. Roca,et al.  Ribonucleotide Reductases of Salmonella Typhimurium: Transcriptional Regulation and Differential Role in Pathogenesis , 2010, PloS one.

[23]  Inna Dubchak,et al.  RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach , 2010, Nucleic Acids Res..

[24]  J. Ramos,et al.  Identification and characterization of the PhhR regulon in Pseudomonas putida. , 2010, Environmental microbiology.

[25]  D. Maes,et al.  The protein–DNA contacts in RutR·carAB operator complexes , 2010, Nucleic acids research.

[26]  M. Whiteley,et al.  Characterization of the Pseudomonas aeruginosa Transcriptional Response to Phenylalanine and Tyrosine , 2010, Journal of bacteriology.

[27]  M. Arlat,et al.  Identification and Regulation of the N-Acetylglucosamine Utilization Pathway of the Plant Pathogenic Bacterium Xanthomonas campestris pv. campestris , 2010, Journal of bacteriology.

[28]  Inna Dubchak,et al.  MicrobesOnline: an integrated portal for comparative and functional genomics , 2009, Nucleic Acids Res..

[29]  C. Buchrieser,et al.  Direct Methods for Studying Transcription Regulatory Proteins and Rna Polymerase in Bacteria This Review Comes from a Themed Issue on Genomics Edited Chromatin Immunoprecipitation , 2022 .

[30]  J. Ramos,et al.  Regulation of Glucose Metabolism in Pseudomonas , 2009, The Journal of Biological Chemistry.

[31]  Inna Dubchak,et al.  Comparative Genomics of Regulation of Fatty Acid and Branched-Chain Amino Acid Utilization in Proteobacteria , 2008, Journal of bacteriology.

[32]  J. Pittard,et al.  Biosynthesis of the Aromatic Amino Acids , 2008, EcoSal Plus.

[33]  Dmitry A. Rodionov,et al.  Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators , 2008, Nucleic acids research.

[34]  J. Badia,et al.  Dual Role of LldR in Regulation of the lldPRD Operon, Involved in l-Lactate Metabolism in Escherichia coli , 2008, Journal of bacteriology.

[35]  J. Ramos,et al.  A Set of Activators and Repressors Control Peripheral Glucose Pathways in Pseudomonas putida To Yield a Common Central Intermediate , 2008, Journal of bacteriology.

[36]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[37]  Yasutaro Fujita,et al.  Regulation of fatty acid metabolism in bacteria , 2007, Molecular microbiology.

[38]  A. Ishihama,et al.  RutR is the uracil/thymine‐sensing master regulator of a set of genes for synthesis and degradation of pyrimidines , 2007, Molecular microbiology.

[39]  M. Caldara,et al.  ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12. , 2007, Journal of molecular biology.

[40]  P. Rainey,et al.  Genetic Analysis of the Histidine Utilization (hut) Genes in Pseudomonas fluorescens SBW25 , 2007, Genetics.

[41]  Dmitry A Rodionov,et al.  Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. , 2007, Chemical reviews.

[42]  B. Sjöberg,et al.  NrdR Controls Differential Expression of the Escherichia coli Ribonucleotide Reductase Genes , 2007, Journal of bacteriology.

[43]  D. Rodionov,et al.  Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module , 2007, Proceedings of the National Academy of Sciences.

[44]  Mikhail S. Gelfand,et al.  Computational Reconstruction of Iron- and Manganese-Responsive Transcriptional Networks in α-Proteobacteria , 2006, PLoS Comput. Biol..

[45]  Andrei L Osterman,et al.  Comparative Genomics and Experimental Characterization of N-Acetylglucosamine Utilization Pathway of Shewanella oneidensis* , 2006, Journal of Biological Chemistry.

[46]  M. Gelfand,et al.  Evolution of transcriptional regulatory networks in microbial genomes. , 2006, Current opinion in structural biology.

[47]  M. Gelfand,et al.  Computational identification of BioR, a transcriptional regulator of biotin metabolism in Alphaproteobacteria, and of its binding signal. , 2006, FEMS microbiology letters.

[48]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[49]  D. Beckett The Escherichia coli biotin regulatory system: a transcriptional switch. , 2005, The Journal of nutritional biochemistry.

[50]  J. Pittard,et al.  The TyrR regulon , 2004, Molecular microbiology.

[51]  J. García,et al.  The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida , 2004, Journal of bacteriology.

[52]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[53]  Akira Ishihama,et al.  Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli , 2004, Molecular microbiology.

[54]  L. Reitzer,et al.  Nitrogen assimilation and global regulation in Escherichia coli. , 2003, Annual review of microbiology.

[55]  Sylvain Durand,et al.  The Escherichia coli metD Locus Encodes an ABC Transporter Which Includes Abc (MetN), YaeE (MetI), and YaeC (MetQ) , 2002, Journal of bacteriology.

[56]  J. Pittard,et al.  Molecular analysis of tyrosine‐ and phenylalanine‐mediated repression of the tyrB promoter by the TyrR protein of Escherichia coli , 2002, Molecular microbiology.

[57]  C. Rock,et al.  The FabR (YijC) Transcription Factor Regulates Unsaturated Fatty Acid Biosynthesis in Escherichia coli * , 2002, The Journal of Biological Chemistry.

[58]  Vittorio Venturi,et al.  TetR Family Member PsrA Directly Binds the Pseudomonas rpoS and psrA Promoters , 2002, Journal of bacteriology.

[59]  R. Parslow,et al.  Studies of the Escherichia coli Trp repressor binding to its five operators and to variant operator sequences. , 2001, European journal of biochemistry.

[60]  A A Mironov,et al.  Regulation of aromatic amino acid biosynthesis in gamma-proteobacteria. , 2001, Journal of molecular microbiology and biotechnology.

[61]  J. Plumbridge,et al.  DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. , 2001, Nucleic acids research.

[62]  A. Khodursky,et al.  Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Abdelal,et al.  Role of ArgR in Activation of the ast Operon, Encoding Enzymes of the Arginine Succinyltransferase Pathway in Salmonella typhimurium , 1999, Journal of bacteriology.

[64]  R. Somerville,et al.  The tpl promoter of Citrobacter freundii is activated by the TyrR protein , 1997, Journal of bacteriology.

[65]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[66]  Yan Xu,et al.  Evidence for distinct ligand-bound conformational states of the multifunctional Escherichia coli repressor of biotin biosynthesis. , 1995, Biochemistry.

[67]  J. Plumbridge,et al.  Co‐ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. , 1995, The EMBO journal.

[68]  S. Ehrlich,et al.  Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon , 1995, Journal of bacteriology.

[69]  B. Hurlburt,et al.  Functional selection and characterization of DNA binding sites for trp repressor of Escherichia coli. , 1994, The Journal of biological chemistry.

[70]  J. Carey,et al.  Binding of the arginine repressor of Escherichia coli K12 to its operator sites. , 1992, Journal of molecular biology.

[71]  C. DiRusso,et al.  Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. , 1992, The Journal of biological chemistry.

[72]  J. Foster,et al.  Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon , 1990, Journal of Bacteriology.

[73]  N. Brot,et al.  Methionine synthesis in Escherichia coli: effect of the MetR protein on metE and metH expression. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Pittard,et al.  Autoregulation of the tyrR gene , 1982, Journal of bacteriology.

[75]  B. Magasanik,et al.  Gene order of the histidine utilization (hut) operons in Klebsiella aerogenes , 1975, Journal of bacteriology.

[76]  B. Magasanik,et al.  Isolation of super-repressor mutants in the histidine utilization system of Salmonella typhimurium , 1975, Journal of bacteriology.

[77]  A. Arkin,et al.  Control of methionine metabolism by the SahR transcriptional regulator in Proteobacteria. , 2014, Environmental microbiology.

[78]  P. Hallenbeck,et al.  Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. , 2010, Advances in experimental medicine and biology.

[79]  P. Albareda PhhR Binds to Target Sequences at Different Distances with Respect to RNA Polymerase in Order to Activate Transcription , 2009 .

[80]  S. Busby,et al.  Analysis of mechanisms of activation and repression at bacterial promoters. , 2009, Methods.

[81]  S. Busby,et al.  The regulation of bacterial transcription initiation , 2004, Nature Reviews Microbiology.

[82]  Peter D. Karp,et al.  The EcoCyc Database , 2002, Nucleic Acids Res..

[83]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..