Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools

We present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution (HOD), the conditional luminosity function (CLF), abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos, or to follow custom number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. The package has an optimized toolkit to make mock observations on a synthetic galaxy population, including galaxy clustering, galaxy-galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others, allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation. Halotools has an automated testing suite and is exhaustively documented on this http URL, which includes quickstart guides, source code notes and a large collection of tutorials. The documentation is effectively an online textbook on how to build and study empirical models of galaxy formation with Python.

[1]  J. Tinker,et al.  Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality , 2011, 1107.5311.

[2]  Andrew P. Hearin,et al.  The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing , 2013, 1310.6747.

[3]  F. V. D. Bosch,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[4]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[5]  Chung-Pei Ma,et al.  Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions , 2000, astro-ph/0003343.

[6]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[7]  Katrin Heitmann,et al.  MASS FUNCTION PREDICTIONS BEYOND ΛCDM , 2010, 1005.2239.

[8]  Erik Tollerud,et al.  Software Use in Astronomy: an Informal Survey , 2015, ArXiv.

[9]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[10]  S. More,et al.  Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.

[11]  J. Tinker,et al.  On the Mass-to-Light Ratio of Large-Scale Structure , 2004, astro-ph/0411777.

[12]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[13]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[14]  S. Habib,et al.  DARK MATTER HALO PROFILES OF MASSIVE CLUSTERS: THEORY VERSUS OBSERVATIONS , 2011, 1112.5479.

[15]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[16]  Stefan Gottloeber,et al.  The ART of Cosmological Simulations , 2008, 0803.4343.

[17]  F. V. D. Bosch,et al.  Linking early‐ and late‐type galaxies to their dark matter haloes , 2002, astro-ph/0210495.

[18]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[19]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[20]  Risa H. Wechsler,et al.  ON THE LACK OF EVOLUTION IN GALAXY STAR FORMATION EFFICIENCY , 2012, 1209.3013.

[21]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.

[22]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[23]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.

[24]  J. Rhodes,et al.  EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM z = 1 TO 0 , 2013, 1308.2974.

[25]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[26]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[27]  A. Kravtsov,et al.  A UNIVERSAL MODEL FOR HALO CONCENTRATIONS , 2014, 1407.4730.

[28]  Kristin Riebe,et al.  The MultiDark Database: Release of the Bolshoi and MultiDark Cosmological Simulations , 2011, ArXiv.

[29]  Princeton University,et al.  The Non-Parametric Model for Linking Galaxy Luminosity with Halo/Subhalo Mass: Are First Brightest Galaxies Special? , 2005, astro-ph/0701096.

[30]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[31]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[32]  Hal Finkel,et al.  THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS , 2015, 1508.02654.

[33]  Ofer Lahav,et al.  Distribution of red and blue galaxies in groups: an empirical test of the halo model , 2005 .

[34]  J. Tinker,et al.  Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.

[35]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[36]  Samuel W. Skillman,et al.  THE CONCENTRATION DEPENDENCE OF THE GALAXY–HALO CONNECTION: MODELING ASSEMBLY BIAS WITH ABUNDANCE MATCHING , 2015, 1510.05651.

[37]  R. Sheth,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[38]  Andrew P. Hearin,et al.  The dark side of galaxy colour , 2013, 1304.5557.

[39]  Risa H. Wechsler,et al.  GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY , 2011, 1110.4370.

[40]  Alexie Leauthaud,et al.  A 2.5 per cent measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies , 2014, 1404.3742.

[41]  A. Leauthaud,et al.  A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER , 2011, 1103.2077.

[42]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[43]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[44]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[45]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.