Well-structured transition systems everywhere!

Well-structured transition systems (WSTSs) are a general class of infinite-state systems for which decidability results rely on the existence of a well-quasi-ordering between states that is compatible with the transitions. In this article, we provide an extensive treatment of the WSTS idea and show several new results. Our improved definitions allow many examples of classical systems to be seen as instances of WSTSs.

[1]  Faron Moller,et al.  Infinite Results , 1996, CONCUR.

[2]  Parosh Aziz Abdulla,et al.  Ensuring completeness of symbolic verification methods for infinite-state systems , 2001, Theor. Comput. Sci..

[3]  Giorgio Delzanno,et al.  Symbolic Representation of Upward-Closed Sets , 2000, TACAS.

[4]  Ahmed Bouajjani,et al.  Model Checking Lossy Vector Addition Systems , 1999, STACS.

[5]  Alain Finkel,et al.  Reduction and covering of infinite reachability trees , 1990, Inf. Comput..

[6]  Parosh Aziz Abdulla,et al.  Verifying Networks of Timed Processes (Extended Abstract) , 1998, TACAS.

[7]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[8]  Philippe Schnoebelen,et al.  Reset Nets Between Decidability and Undecidability , 1998, ICALP.

[9]  李幼升,et al.  Ph , 1989 .

[10]  Parosh Aziz Abdulla,et al.  General decidability theorems for infinite-state systems , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[11]  Petr Jancar A Note on Well Quasi-Orderings for Powersets , 1999, Inf. Process. Lett..

[12]  Peter Z. Revesz A Closed Form for Datalog Queries with Integer Order , 1990, ICDT.

[13]  Edmund M. Clarke,et al.  Characterizing Finite Kripke Structures in Propositional Temporal Logic , 1988, Theor. Comput. Sci..

[14]  Parosh Aziz Abdulla,et al.  Verifying Programs with Unreliable Channels , 1996, Inf. Comput..

[15]  P.A. Abdulla,et al.  Better is better than well: on efficient verification of infinite-state systems , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[16]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[17]  Alain Finkel,et al.  Structuration des systèmes de transitions-applications au contrôle du parallélisme par Files Fifo , 1986 .

[18]  P. McKenzie,et al.  A Well − Structured Framework for Analysing Petri Nets Extensions Research Report LSV , 1999 .

[19]  Joseph B. Kruskal,et al.  The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.

[20]  Rüdiger Valk Self-Modifying Nets, a Natural Extension of Petri Nets , 1978, ICALP.

[21]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[22]  Giorgio Delzanno,et al.  A Bottom-up Semantics for Lo -preliminary Results , 2000 .

[23]  Alain Finkel,et al.  Programs with Quasi-Stable Channels are Effectively Recognizable (Extended Abstract) , 1997, CAV.

[24]  Erkki Mäkinen On permutative grammars generating context-free languages , 1985, BIT Comput. Sci. Sect..

[25]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[26]  Gianfranco Ciardo,et al.  Petri Nets with Marking-Dependent Ar Cardinality: Properties and Analysis , 1994, Application and Theory of Petri Nets.

[27]  Karlis Cerans,et al.  Deciding Properties of Integral Relational Automata , 1994, ICALP.

[28]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[29]  Alain Finkel,et al.  An Introduction to Fifo Nets-Monogeneous Nets: A Subclass of Fifo Nets , 1985, Theor. Comput. Sci..

[30]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[31]  A. Finkel G. Cécé and A. Finkel Programs with Quasi−stable Channels Are Effectively Recognizable Programs with Quasi-stable Channels Are Eeectively Recognizable , 1997 .

[32]  Alain Finkel,et al.  A Generalization of the Procedure of Karp and Miller to Well Structured Transition Systems , 1987, ICALP.

[33]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[34]  Thomas A. Henzinger,et al.  A Classification of Symbolic Transition Systems , 2000, STACS.

[35]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[36]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[37]  Parosh Aziz Abdulla,et al.  Algorithmic Analysis of Programs with Well Quasi-ordered Domains , 2000, Inf. Comput..

[38]  Richard M. Karp,et al.  Parallel Program Schemata , 1969, J. Comput. Syst. Sci..

[39]  Helko Lehmann,et al.  Coverability of Reset Petri Nets and Other Well-Structured Transition Systems by Partial Deduction , 2000, Computational Logic.

[40]  Thomas A. Henzinger,et al.  Hybrid Automata with Finite Bisimulatioins , 1995, ICALP.

[41]  J. Esparza More Innnite Results , 1996 .

[42]  Philippe Schnoebelen,et al.  A Formal Framework for the Analysis of Recursive-Parallel Programs , 1997, PaCT.

[43]  Alain Finkel,et al.  Unreliable Channels are Easier to Verify Than Perfect Channels , 1996, Inf. Comput..

[44]  Philippe Schnoebelen,et al.  A model for recursive-parallel programs , 1996, INFINITY.

[45]  Jan A. Bergstra,et al.  Decidability of Bisimulation Equivalence for Processes Generating Context-Free Languages , 1987, PARLE.

[46]  Tadao Kasami,et al.  Some Decision Problems Related to the Reachability Problem for Petri Nets , 1976, Theor. Comput. Sci..

[47]  A. Arnold,et al.  Recursivite et cones rationnels fermes par intersection , 1978 .

[48]  Gregor von Bochmann,et al.  Finite State Description of Communication Protocols , 1978, Comput. Networks.

[49]  Kedar S. Namjoshi,et al.  Verification of Parameterized Bus Arbitration Protocol , 1998, CAV.

[50]  Mohamed G. Gouda,et al.  Priority Networks of Communicating Finite State Machines , 1985, SIAM J. Comput..

[51]  Bengt Jonsson,et al.  Deciding Bisimulation Equivalences for a Class of Non-Finite-State Programs , 1989, Inf. Comput..

[52]  Peter Radford,et al.  Petri Net Theory and the Modeling of Systems , 1982 .

[53]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[54]  L. Dickson Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors , 1913 .

[55]  Bernd Heinemann Subclasses of Self-Modifying Nets , 1981, Selected Papers from the First and the Second European Workshop on Application and Theory of Petri Nets.

[56]  Faron Moller,et al.  Decidable Subsets of CCS , 1994, Comput. J..