Scalable perovskite/CIGS thin-film solar module with power conversion efficiency of 17.8%

All-thin film perovskite/CIGS multijunction solar modules, combining a semi-transparent perovskite top solar module stacked on a CIGS bottom solar module, are a promising route to surpass the efficiency limits of single-junction thin-film solar modules. In this work, we present a scalable thin-film perovskite/CIGS photovoltaic module with an area of 3.76 cm2 and a power conversion efficiency of 17.8%. Our prototype outperforms both the record single-junction perovskite solar module of the same area as well as the reference CIGS solar module. The presented perovskite/CIGS thin-film multijunction solar module makes use of the “4-terminal architecture”, which stacks the perovskite solar module in superstrate configuration on top of the CIGS solar module in substrate configuration. Both submodules apply a scalable interconnection scheme that can accommodate scale-up towards square meter scale thin-film multijunction solar modules. In order to identify the future potential of the presented stacked perovskite/CIGS thin-film solar module, we quantify the various losses in the presented prototype and identify the key challenges of this technology towards very high power conversion efficiencies.

[1]  D. Hariskos,et al.  High-efficiency Cu(In,Ga)Se2 cells and modules , 2013 .

[2]  Carsten Rockstuhl,et al.  Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells. , 2009, Optics express.

[3]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[4]  A. Tiwari,et al.  High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration , 2016, Nature Energy.

[5]  Christophe Ballif,et al.  Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells , 2014, IEEE Journal of Photovoltaics.

[6]  Namchul Cho,et al.  Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade‐Coating , 2015 .

[7]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[8]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[9]  Jef Poortmans,et al.  Interconnection Optimization for Highly Efficient Perovskite Modules , 2017, IEEE Journal of Photovoltaics.

[10]  Christophe Ballif,et al.  Sputtered rear electrode with broadband transparency for perovskite solar cells , 2015 .

[11]  K. Catchpole,et al.  Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency , 2017 .

[12]  Bert Conings,et al.  An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates , 2015 .

[13]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[14]  C. McNeill,et al.  Amorphous hole-transporting layer in slot-die coated perovskite solar cells , 2017 .

[15]  B. von Roedern,et al.  Effect of light intensity on current collection in thin-film solar cells , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[16]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[17]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[18]  C. Battaglia,et al.  Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells , 2013 .

[19]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[20]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[21]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[22]  P. Heremans,et al.  Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating , 2016 .

[23]  D. Cheyns,et al.  Crystallisation dynamics in wide-bandgap perovskite films , 2016 .

[24]  V. Rotello,et al.  Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells , 2016 .

[25]  S. Nishiwaki,et al.  Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules , 2012, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[26]  Albert Polman,et al.  Transparent conducting silver nanowire networks. , 2012, Nano letters.

[27]  Dong Yang,et al.  High efficiency flexible perovskite solar cells using superior low temperature TiO2 , 2015 .

[28]  Andrew Blakers,et al.  Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem , 2016, IEEE Journal of Photovoltaics.

[29]  Michael D. McGehee,et al.  High-efficiency tandem perovskite solar cells , 2015 .

[30]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[31]  G. Hernández-Sosa,et al.  Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells , 2016 .

[32]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[33]  K. Catchpole,et al.  Optics and Light Trapping for Tandem Solar Cells on Silicon , 2014, IEEE Journal of Photovoltaics.

[34]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[35]  Wei Zhang,et al.  Pinhole-free perovskite films for efficient solar modules , 2016 .

[36]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[37]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[38]  Andreas Bauer,et al.  Novel series connection concept for thin film solar modules , 2013 .

[39]  Chao Zhang,et al.  Advancing tandem solar cells by spectrally selective multilayer intermediate reflectors. , 2014, Optics express.

[40]  Liyuan Han,et al.  Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells , 2016 .

[41]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[42]  Ingrid Repins,et al.  CIGS absorbers and processes , 2010 .

[43]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[44]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[45]  Maarten Debucquoy,et al.  Four‐Terminal Perovskite/Silicon Multijunction Solar Modules , 2017 .