Microcracks and Osteoclast Resorption Activity In Vitro

[1]  K. Jepsen,et al.  Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. , 2010, Bone.

[2]  K. Nakahama,et al.  Cellular communications in bone homeostasis and repair , 2010, Cellular and Molecular Life Sciences.

[3]  K. Jepsen,et al.  Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. , 2010, Bone.

[4]  E. Cassinelli,et al.  Trabecular Microfracture Precedes Cortical Shell Failure in the Rat Caudal Vertebra Under Cyclic Overloading , 2009, Calcified Tissue International.

[5]  O. Verborgt,et al.  Osteocyte Apoptosis Controls Activation of Intracortical Resorption in Response to Bone Fatigue , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[6]  F. O'Brien,et al.  The effects of increased intracortical remodeling on microcrack behaviour in compact bone. , 2008, Bone.

[7]  O. Akkus,et al.  In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging. , 2008, Bone.

[8]  M. McKee,et al.  Osteopontin functions as an opsonin and facilitates phagocytosis by macrophages of hydroxyapatite-coated microspheres: implications for bone wound healing. , 2008, Bone.

[9]  Peter Zioupos,et al.  Fatigue strength of human cortical bone: age, physical, and material heterogeneity effects. , 2008, Journal of biomedical materials research. Part A.

[10]  Peter Fratzl,et al.  The effect of geometry on three-dimensional tissue growth , 2008, Journal of The Royal Society Interface.

[11]  F. Jakob,et al.  The Matricellular Protein CYR61 Inhibits Osteoclastogenesis by a Mechanism Independent of αvβ3 and αvβ5 , 2007 .

[12]  A. Gefen,et al.  Computational determination of the critical microcrack size that causes a remodeling response in a trabecula: a feasibility study. , 2007, Journal of applied biomechanics.

[13]  R. Martin,et al.  Targeted bone remodeling involves BMU steering as well as activation. , 2007, Bone.

[14]  P. Fratzl,et al.  Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds. , 2007, Journal of biomedical materials research. Part A.

[15]  D. Fyhrie,et al.  On sampling bones for microcracks. , 2007, Bone.

[16]  Deepak Vashishth,et al.  Morphology, localization and accumulation of in vivo microdamage in human cortical bone. , 2007, Bone.

[17]  M. Rogers,et al.  A Novel Method for Efficient Generation of Transfected Human Osteoclasts , 2007, Calcified Tissue International.

[18]  Deepak Vashishth,et al.  Age-related change in the damage morphology of human cortical bone and its role in bone fragility. , 2006, Bone.

[19]  T. Hentunen,et al.  Death of osteocytes turns off the inhibition of osteoclasts and triggers local bone resorption. , 2005, Biochemical and biophysical research communications.

[20]  M. Markel,et al.  Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes. , 2005, Bone.

[21]  A. Schilling,et al.  Resorbability of bone substitute biomaterials by human osteoclasts. , 2004, Biomaterials.

[22]  B. Noble,et al.  Bone microdamage and cell apoptosis. , 2003, European cells & materials.

[23]  D. Davy,et al.  Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important. , 2003, Journal of biomedical materials research. Part A.

[24]  L. Lanyon,et al.  Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. , 2003, American journal of physiology. Cell physiology.

[25]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[26]  H. Donahue,et al.  Gap junctions and biophysical regulation of bone cell differentiation. , 2000, Bone.

[27]  D Vashishth,et al.  In vivo diffuse damage in human vertebral trabecular bone. , 2000, Bone.

[28]  H. Väänänen,et al.  The cell biology of osteoclast function. , 2000, Journal of cell science.

[29]  Sundeep Khosla,et al.  The Roles of Osteoprotegerin and Osteoprotegerin Ligand in the Paracrine Regulation of Bone Resorption , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[30]  O. Verborgt,et al.  Loss of Osteocyte Integrity in Association with Microdamage and Bone Remodeling After Fatigue In Vivo , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[31]  F. Cui,et al.  Hierarchical structure of ivory : from nanometer to centimeter , 1999 .

[32]  D P Fyhrie,et al.  Intracortical remodeling in adult rat long bones after fatigue loading. , 1998, Bone.

[33]  D P Fyhrie,et al.  Damage type and strain mode associations in human compact bone bending fatigue , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[34]  W. Ambrosius,et al.  Does microdamage accumulation affect the mechanical properties of bone? , 1998, Journal of biomechanics.

[35]  J. Broz,et al.  Effects of deproteinization and ashing on site-specific properties of cortical bone , 1997, Journal of materials science. Materials in medicine.

[36]  D. Burr,et al.  Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[37]  D B Burr,et al.  Increased intracortical remodeling following fatigue damage. , 1993, Bone.

[38]  B. Lawn,et al.  Indentation fracture: principles and applications , 1975 .

[39]  Eric J. W. Visser,et al.  Abramoff MD, Magalhaes PJ, Ram SJ. 2004. Image Processing with ImageJ. Biophotonics , 2012 .

[40]  F. Jakob,et al.  The matricellular protein CYR61 inhibits osteoclastogenesis by a mechanism independent of alphavbeta3 and alphavbeta5. , 2007, Endocrinology.

[41]  D. Vashishth,et al.  Susceptibility of aging human bone to mixed-mode fracture increases bone fragility. , 2006, Bone.

[42]  Bruce Martin,et al.  Aging and strength of bone as a structural material , 2005, Calcified Tissue International.

[43]  S. Colucci,et al.  Binding of osteopontin to the osteoclast integrin αvβ3 , 2005, Osteoporosis International.

[44]  A. Parfitt Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. , 2002, Bone.

[45]  S. Colucci,et al.  Binding of osteopontin to the osteoclast integrin alpha v beta 3. , 1993, Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.

[46]  E. Radin,et al.  Mechanical and morphological effects of strain rate on fatigue of compact bone. , 1989, Bone.

[47]  E. Radin,et al.  Bone remodeling in response to in vivo fatigue microdamage. , 1985, Journal of biomechanics.

[48]  A. Parfitt The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. , 1982, Metabolic bone disease & related research.