Autonomous spacecraft rendezvous with finite time convergence

Abstract This paper considers the application of nonsingular terminal sliding mode (NTSM) control and extended state observer (ESO) to the circular orbital autonomous spacecraft rendezvous problem subject to model uncertainties and external disturbances. With the aid of Lyapunov stability criteria, we first develop a continuous NTSM-based robust control law and its finite-time convergence characteristic is proven in theory. As the upper bound of the lumped uncertainty cannot be obtained in practice, an ESO based composite ESO–NTSM controller is then presented to achieve high tracking accuracy even under actuator/thruster failures and input saturations. Simulation results of a final closing rendezvous example are provided to demonstrate the effectiveness of the proposed composite ESO–NTSM guidance approach.

[1]  Kamesh Subbarao,et al.  Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking Under Measurement Uncertainty , 2006 .

[2]  Huijun Gao,et al.  Robust reliable control for autonomous spacecraft rendezvous with limited-thrust , 2013 .

[3]  Guang-Ren Duan,et al.  A Parametric Lyapunov Equation Approach to the Design of Low Gain Feedback , 2008, IEEE Transactions on Automatic Control.

[4]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[5]  David B. Smith,et al.  Mars sample return: Architecture and mission design , 2003 .

[6]  Yi Huang,et al.  A new synthesis method for uncertain systems the Self-Stable Region approach , 1999, Int. J. Syst. Sci..

[7]  Wigbert Fehse,et al.  Automated Rendezvous and Docking of Spacecraft , 2003 .

[8]  H. Leeghim,et al.  Spacecraft intercept using minimum control energy and wait time , 2013 .

[9]  Xiaodong Liu,et al.  Adaptive nonsingular terminal sliding mode guidance law against maneuvering targets with impact angle constraint , 2015 .

[10]  Zhihong Man,et al.  Continuous finite-time control for robotic manipulators with terminal sliding mode , 2003, Autom..

[11]  Steve Ulrich,et al.  Simple Adaptive Control for Spacecraft Proximity Operations , 2014 .

[12]  G. Duan,et al.  Circular orbital rendezvous with actuator saturation and delay: A parametric Lyapunov equation approach , 2012 .

[13]  Kai-Yew Lum,et al.  Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems , 2010, IEEE Transactions on Control Systems Technology.

[14]  Changchun Hua,et al.  Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM , 2014 .

[15]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[16]  Xinghuo Yu,et al.  Fast terminal sliding-mode control design for nonlinear dynamical systems , 2002 .

[17]  S. Bhat,et al.  Continuous finite-time stabilization of the translational and rotational double integrators , 1998, IEEE Trans. Autom. Control..

[18]  Yi Huang,et al.  Analysis and design for the second order nonlinear continuous extended states observer , 2000 .

[19]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[20]  S. R. Kumar,et al.  Nonsingular Terminal Sliding Mode Guidance with Impact Angle Constraints , 2014 .

[21]  Michael E. Polites,et al.  An Assessment of the Technology of Automated Rendezvous and Capture in Space , 1998 .

[22]  Fumitoshi Matsuno,et al.  Adaptive time-varying sliding mode control for autonomous spacecraft rendezvous , 2013, 52nd IEEE Conference on Decision and Control.

[23]  Guang-Ren Duan,et al.  Non-fragile robust H ∞ control for uncertain spacecraft rendezvous system with pole and input constraints , 2012, Int. J. Control.

[24]  Lei Guo,et al.  Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances , 2009, Int. J. Control.

[25]  Douglas J. Zimpfer,et al.  Autonomous Rendezvous, Capture and In-Space Assembly: Past, Present and Future , 2005 .

[26]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[27]  Zhao Wang,et al.  Comments on the paper: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control , 2011 .

[28]  Steven R. Chesley,et al.  Deep Impact Navigation System Performance , 2008 .

[29]  Yingmin Jia,et al.  Multi-objective output feedback control for autonomous spacecraft rendezvous , 2014, J. Frankl. Inst..

[30]  Zongli Lin,et al.  Stabilization of linear systems with input delay and saturation—A parametric Lyapunov equation approach , 2010 .

[31]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[32]  Haibo Ji,et al.  Robust control for spacecraft rendezvous with disturbances and input saturation , 2015 .

[33]  Zongli Lin,et al.  Robust global stabilization of linear systems with input saturation via gain scheduling , 2010 .

[34]  K. Teo,et al.  Guidance Laws with Finite Time Convergence , 2009 .

[35]  Huijun Gao,et al.  Multi-Objective Robust $H_{\infty}$ Control of Spacecraft Rendezvous , 2009, IEEE Transactions on Control Systems Technology.