Translating Medicago truncatula genomics to crop legumes.

[1]  B. Roe,et al.  Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes , 2006, Proceedings of the National Academy of Sciences.

[2]  S. Mongrand,et al.  Characterization of Lipid Rafts from Medicago truncatula Root Plasma Membranes: A Proteomic Study Reveals the Presence of a Raft-Associated Redox System1[W] , 2007, Plant Physiology.

[3]  R. Rose,et al.  The Transcription Factor MtSERF1 of the ERF Subfamily Identified by Transcriptional Profiling Is Required for Somatic Embryogenesis Induced by Auxin Plus Cytokinin in Medicago truncatula1[W][OA] , 2008, Plant Physiology.

[4]  James K. Hane,et al.  Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris , 2007, Theoretical and Applied Genetics.

[5]  B. Roe,et al.  Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa , 2008, Proceedings of the National Academy of Sciences.

[6]  R. Oliver,et al.  Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula , 2008, BMC Plant Biology.

[7]  K. Niehaus,et al.  Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches , 2004, Plant Molecular Biology.

[8]  W. Weckwerth,et al.  Medicago truncatula Root Nodule Proteome Analysis Reveals Differential Plant and Bacteroid Responses to Drought Stress12[W][OA] , 2007, Plant Physiology.

[9]  A. Kereszt,et al.  A receptor kinase gene regulating symbiotic nodule development , 2002, Nature.

[10]  K. Silverstein,et al.  The Affymetrix Medicago GeneChip® array is applicable for transcript analysis of alfalfa (Medicago sativa). , 2006, Functional plant biology : FPB.

[11]  M. Martin-Magniette,et al.  Systemic Signaling of the Plant Nitrogen Status Triggers Specific Transcriptome Responses Depending on the Nitrogen Source in Medicago truncatula1[W] , 2008, Plant Physiology.

[12]  T. Huguet,et al.  Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops , 2005, Theoretical and Applied Genetics.

[13]  Kathryn M. Jones,et al.  Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant , 2008, Proceedings of the National Academy of Sciences.

[14]  A. Pühler,et al.  Overlaps in the Transcriptional Profiles of Medicago truncatula Roots Inoculated with Two Different Glomus Fungi Provide Insights into the Genetic Program Activated during Arbuscular Mycorrhiza1[w] , 2005, Plant Physiology.

[15]  R. Dixon,et al.  Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). , 2006, The Plant journal : for cell and molecular biology.

[16]  B. Mangin,et al.  Developmental Genes Have Pleiotropic Effects on Plant Morphology and Source Capacity, Eventually Impacting on Seed Protein Content and Productivity in Pea1[W][OA] , 2007, Plant Physiology.

[17]  A. Pühler,et al.  Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. , 2004, Molecular plant-microbe interactions : MPMI.

[18]  S. Cannon,et al.  Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. , 2008, Molecular plant-microbe interactions : MPMI.

[19]  Kathryn A. VandenBosch,et al.  Computational Identification and Characterization of Novel Genes from Legumes1[w] , 2004, Plant Physiology.

[20]  Hélène Rogniaux,et al.  Comparative Analysis of the Heat Stable Proteome of Radicles of Medicago truncatula Seeds during Germination Identifies Late Embryogenesis Abundant Proteins Associated with Desiccation Tolerance1[W] , 2006, Plant Physiology.

[21]  R. Dixon,et al.  Transcriptome analysis of alfalfa glandular trichomes , 2005, Planta.

[22]  H. Mori,et al.  Genome Structure of the Legume, Lotus japonicus , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[23]  B. Valot,et al.  Sub-cellular proteomic analysis of a Medicago truncatula root microsomal fraction. , 2004, Phytochemistry.

[24]  T. Bisseling,et al.  Microsynteny between pea and Medicago truncatula in the SYM2 region , 2002, Plant Molecular Biology.

[25]  C. Town,et al.  Transcript Profiling Coupled with Spatial Expression Analyses Reveals Genes Involved in Distinct Developmental Stages of an Arbuscular Mycorrhizal Symbiosis Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tp , 2003, The Plant Cell Online.

[26]  G. Jiang,et al.  An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.) , 2005, Theoretical and Applied Genetics.

[27]  B. Rolfe,et al.  Overlap of Proteome Changes in Medicago truncatula in Response to Auxin and Sinorhizobium meliloti1[W][OA] , 2007, Plant Physiology.

[28]  J. Kalinowski,et al.  Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. , 2004, Journal of biotechnology.

[29]  N. Soares,et al.  Proteomics of ionically bound and soluble extracellular proteins in Medicago truncatula leaves , 2007, Proteomics.

[30]  Richard A Dixon,et al.  Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  B. Roe,et al.  Estimating genome conservation between crop and model legume species. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Ivashuta,et al.  Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula , 2008, Planta.

[33]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[34]  T. Bisseling,et al.  RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. , 2004, Journal of experimental botany.

[35]  G. Weiller,et al.  A gene expression atlas of the model legume Medicago truncatula. , 2008, The Plant journal : for cell and molecular biology.

[36]  Richard D. Thompson,et al.  A Combined Proteome and Transcriptome Analysis of Developing Medicago truncatula Seeds , 2007, Molecular & Cellular Proteomics.

[37]  Corey D Broeckling,et al.  Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). , 2005, The Plant journal : for cell and molecular biology.

[38]  E. Stockinger,et al.  Comparative Genomic Sequence and Expression Analyses of Medicago truncatula and Alfalfa Subspecies falcata COLD-ACCLIMATION-SPECIFIC Genes1[W][OA] , 2008, Plant Physiology.

[39]  E. Kondorosi,et al.  Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. , 2007, Molecular plant-microbe interactions : MPMI.

[40]  K. Mysore,et al.  Control of Compound Leaf Development by FLORICAULA/LEAFY Ortholog SINGLE LEAFLET1 in Medicago truncatula1[C][W][OA] , 2008, Plant Physiology.

[41]  N. Le Meur,et al.  Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. , 2006, The Plant journal : for cell and molecular biology.

[42]  M. J. Harrison,et al.  A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis , 2007, Proceedings of the National Academy of Sciences.

[43]  T. Ellis,et al.  Comparative mapping between Medicago sativa and Pisum sativum , 2004, Molecular Genetics and Genomics.

[44]  R. Dixon,et al.  Metabolic Engineering of Isoflavonoid Biosynthesis in Alfalfa1[w] , 2005, Plant Physiology.

[45]  Zhentian Lei,et al.  A Two-dimensional Electrophoresis Proteomic Reference Map and Systematic Identification of 1367 Proteins from a Cell Suspension Culture of the Model Legume Medicago truncatula*S , 2005, Molecular & Cellular Proteomics.

[46]  B. Roe,et al.  Identification and Characterization of Nucleotide-Binding Site-Leucine-Rich Repeat Genes in the Model Plant Medicago truncatula1[W][OA] , 2007, Plant Physiology.

[47]  Patrick X Zhao,et al.  Large-scale Insertional Mutagenesis Using the Tnt1 Retrotransposon in the Model Legume Medicago Truncatula , 2007 .

[48]  D. Cook,et al.  Production and characterization of diverse developmental mutants of Medicago truncatula. , 2000, Plant physiology.

[49]  Hank C Wu,et al.  A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula , 2008, Plant Methods.

[50]  J. Willemse,et al.  LysM Domain Receptor Kinases Regulating Rhizobial Nod Factor-Induced Infection , 2003, Science.

[51]  S. Long,et al.  Nitrogen Fixation Mutants of Medicago truncatula Fail to Support Plant and Bacterial Symbiotic Gene Expression1[W][OA] , 2006, Plant Physiology.

[52]  Lloyd W Sumner,et al.  Quantification of saponins in aerial and subterranean tissues of Medicago truncatula. , 2005, Journal of agricultural and food chemistry.

[53]  A. Barsch,et al.  Antisense Repression of the Medicago truncatula Nodule-Enhanced Sucrose Synthase Leads to a Handicapped Nitrogen Fixation Mirrored by Specific Alterations in the Symbiotic Transcriptome and Metabolome1[W] , 2007, Plant Physiology.

[54]  M. Crespi,et al.  MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. , 2006, Genes & development.

[55]  Rujin Chen,et al.  Fast neutron bombardment (FNB) mutagenesis for forward and reverse genetic studies in plants. , 2006 .

[56]  Yan Zhang,et al.  Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers , 2007, Theoretical and Applied Genetics.

[57]  Richard D. Thompson,et al.  Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. , 2008, The Plant journal : for cell and molecular biology.

[58]  L. Stein,et al.  Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza , 2008, Genome Biology.

[59]  J. Weinman,et al.  Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting , 2001, Proteomics.

[60]  K. Olsen,et al.  Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa , 2007, Theoretical and Applied Genetics.

[61]  Ulrike Mathesius,et al.  Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts , 2004, Proteomics.

[62]  Hong-Kyu Choi,et al.  A Sequence-Based Genetic Map of Medicago truncatula and Comparison of Marker Colinearity with M. sativa , 2004, Genetics.

[63]  R. Dixon,et al.  Metabolomics Reveals Novel Pathways and Differential Mechanistic and Elicitor-Specific Responses in Phenylpropanoid and Isoflavonoid Biosynthesis in Medicago truncatula Cell Cultures1[C][W][OA] , 2007, Plant Physiology.

[64]  Richard A Dixon,et al.  Lignin modification improves fermentable sugar yields for biofuel production , 2007, Nature Biotechnology.

[65]  J. Downie,et al.  Coordinating nodule morphogenesis with rhizobial infection in legumes. , 2008, Annual review of plant biology.

[66]  Christopher D. Town,et al.  Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling , 2008, Plant Molecular Biology.