Tailoring far-infrared surface plasmon polaritons of a single-layer graphene using plasmon-phonon hybridization in graphene-LiF heterostructures

[1]  E. Ozbay,et al.  Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial. , 2018, Optics express.

[2]  Z. Ren,et al.  Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation , 2018 .

[3]  A. Lakhtakia,et al.  Characteristic Attributes of Multiple Cascaded Terahertz Metasurfaces with Magnetically Tunable Subwavelength Resonators , 2018 .

[4]  Pablo Rodríguez Ulibarri,et al.  One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers , 2017 .

[5]  E. Ozbay,et al.  Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials [Invited] , 2017 .

[6]  E. Ozbay,et al.  Long-range Tamm surface plasmons supported by graphene-dielectric metamaterials , 2017 .

[7]  R. Sundararaman,et al.  Effects of Interlayer Coupling on Hot‐Carrier Dynamics in Graphene‐Derived van der Waals Heterostructures , 2016, 1612.08196.

[8]  P. Leung,et al.  Guided Plasmon Modes of a Graphene-Coated Kerr Slab , 2016, Plasmonics.

[9]  E. Ozbay,et al.  Dielectric inspired scaling of polarization conversion subwavelength resonances in open ultrathin chiral structures , 2015 .

[10]  G. Lovat,et al.  Nonlocal Effects on Surface Plasmon Polariton Propagation in Graphene Nanoribbons , 2015, IEEE Transactions on Terahertz Science and Technology.

[11]  E. Ozbay,et al.  Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics , 2015 .

[12]  H. Nalwa,et al.  Stability of graphene-based heterojunction solar cells , 2015 .

[13]  F. Xia,et al.  Tunable Plasmon–Phonon Polaritons in Layered Graphene–Hexagonal Boron Nitride Heterostructures , 2015 .

[14]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[15]  Euan Hendry,et al.  All-optical generation of surface plasmons in graphene , 2015, Nature Physics.

[16]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[17]  Phaedon Avouris,et al.  Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System. , 2015, Nano letters.

[18]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[19]  E. Ozbay,et al.  One-way absorption of terahertz waves in rod-type and multilayer structures containing polar dielectrics , 2014 .

[20]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[21]  M. Kafesaki,et al.  THz metamaterials made of phonon-polariton materials , 2014 .

[22]  H. Atwater,et al.  Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. , 2014, Nano letters.

[23]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[24]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[25]  Malin Premaratne,et al.  Spaser made of graphene and carbon nanotubes. , 2014, ACS nano.

[26]  Wenjuan Zhu,et al.  Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. , 2014, Nano letters.

[27]  M. Kalafi,et al.  Surface Plasmons of a Graphene Parallel Plate Waveguide Bounded by Kerr-type Nonlinear Media , 2014 .

[28]  E. Ozbay,et al.  Asymmetric transmission of terahertz waves using polar dielectrics. , 2014, Optics express.

[29]  J. Zi,et al.  Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography. , 2013, Nano letters.

[30]  A. Alvarez-Melcon,et al.  Spatially Dispersive Graphene Single and Parallel Plate Waveguides: Analysis and Circuit Model , 2013, IEEE Transactions on Microwave Theory and Techniques.

[31]  M. Kalafi,et al.  Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal , 2013 .

[32]  S. Maier,et al.  Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. , 2013, Nano letters.

[33]  M. Premaratne,et al.  Graphene metamaterial for optical reflection modulation , 2013 .

[34]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[35]  Paolo Burghignoli,et al.  Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene , 2013 .

[36]  G. W. Hanson,et al.  Erratum: “Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene” [J. Appl. Phys. 103, 064302 (2008)] , 2013 .

[37]  H. Hajian,et al.  Tunable far-IR bandgaps in a one-dimensional graphene-dielectric photonic crystal , 2012 .

[38]  G. Agrawal,et al.  Guided plasmonic modes of anisotropic slot waveguides , 2012, Nanotechnology.

[39]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[40]  F. Guinea,et al.  Mid-infrared plasmons in scaled graphene nanostructures , 2012, 1209.1984.

[41]  F. Guinea,et al.  Resonant plasmonic effects in periodic graphene antidot arrays , 2012, 1206.2163.

[42]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[43]  S. Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2011, Physical review letters.

[44]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[45]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[46]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[47]  P. Nordlander,et al.  Effect of a proximal substrate on plasmon propagation in silver nanowires , 2010 .

[48]  J. A. Schaefer,et al.  Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem , 2010, 1008.1130.

[49]  E. H. Hwang,et al.  Plasmon-phonon coupling in graphene , 2010, 1008.0862.

[50]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[51]  E. Hendry,et al.  Coherent nonlinear optical response of graphene. , 2009, Physical review letters.

[52]  R. F. Willis,et al.  Plasmon-phonon strongly coupled mode in epitaxial graphene , 2009, 0910.2735.

[53]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[54]  George W. Hanson,et al.  Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide , 2008 .

[55]  C. Gu,et al.  The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region , 2008 .

[56]  L. Falkovsky,et al.  Optical properties of graphene , 2008, 0806.3663.

[57]  G. Hanson,et al.  Dyadic Green's Functions for an Anisotropic, Non-Local Model of Biased Graphene , 2008, IEEE Transactions on Antennas and Propagation.

[58]  N. Jokerst,et al.  Tuned permeability in terahertz split-ring resonators for devices and sensors , 2007 .

[59]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[60]  N. Engheta,et al.  Parallel-plate metamaterials for cloaking structures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[62]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[63]  M. Wegener,et al.  Single-slit split-ring resonators at optical frequencies: limits of size scaling. , 2006, Optics letters.

[64]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[65]  Y. Kivshar,et al.  Nonlinear surface waves in left-handed materials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[67]  Fukui,et al.  Experimental observation of attenuated-total-reflection spectra of GaAs/AlAs superlattice. , 1990, Physical review. B, Condensed matter.

[68]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[69]  Y. Kivshar,et al.  Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides , 2010 .

[70]  D. Fedyanin,et al.  Backward waves in planar insulator–metal–insulator waveguide structures , 2009 .