Optical imaging techniques for hypersonic impulse facilities

The application of optical imaging techniques to hypersonic facilities is discussed and examples of experimental measurements are provided. Traditional Schlieren and shadowgraph techniques still remain as inexpensive and easy to use flow visualisation techniques. With the advent of faster cameras, these methods are becoming increasingly important for time-resolved high-speed imaging. Interferometry's quantitative nature is regularly used to obtain density information about hypersonic flows. Recent developments have seen an extension of the types of flows that can be imaged and the measurement of other flow parameters such as ionisation level. Planar laser induced fluorescence has been used to visualise complex flows and to measure such quantities as temperature and velocity. Future directions for optical imaging are discussed.

[1]  S. Gai,et al.  Mole-Fraction-Sensitive Imaging of Hypermixing Shear Layers , 2001 .

[2]  Jr. Paul H. Cords A High Resolution, High Sensitivity Color Schlieren Method , 1968 .

[3]  R. Zare,et al.  Effects of Saturation on Laser-Induced Fluorescence Measurements of Population and Polarization , 1984 .

[4]  W. Ruyten Comparison of calculated and measured temperature fields in the AEDC Impulse Facility , 1996 .

[5]  R. Hanson Planar laser-induced fluorescence imaging☆ , 1988 .

[6]  R. Hanson,et al.  PLIF imaging of transient shock phenomena in hypersonic flows , 1994 .

[7]  Dalibor Vukicevic,et al.  Dynamic digital holographic interferometry with three wavelengths. , 2003, Optics express.

[8]  D. Kastell,et al.  Phase step holographic interferometry applied to hypervelocity, non-equilibrium cylinder flow , 1996 .

[9]  R M Measures Spectral line interferometry: a proposed means of selectively measuring the change in the density of a specific atomic population. , 1970, Applied optics.

[10]  D J Bone,et al.  Fourier fringe analysis: the two-dimensional phase unwrapping problem. , 1991, Applied optics.

[11]  Edward H. Piepmeier,et al.  Theory of laser saturated atomic resonance fluorescence , 1972 .

[12]  Joseph Honour High-resolution electronic imaging system for schlieren recording , 2001, International Congress on High-Speed Imaging and Photonics.

[13]  D J Bone,et al.  Fringe-pattern analysis using a 2-D Fourier transform. , 1986, Applied optics.

[14]  K. Takayama,et al.  Application Of Holographic Interferometry To Shock Wave Research , 1983, Other Conferences.

[15]  P. C. Palma,et al.  Optical and Pressure Measurements in Shock Tunnel Testing of a Model Scramjet Combustor , 1997 .

[16]  A. Sasoh,et al.  Ionizing Nitrogen and Air Flows in a Superorbital Expansion Tube , 2000 .

[17]  G. Settles Schlieren and shadowgraph techniques , 2001 .

[18]  G. Diskin,et al.  The RELIEF flow tagging technique and its application in engine testing facilities and for helium-air mixing studies , 2000 .

[19]  M. Sun,et al.  Interferometric measurement of density in nonstationary shock wave reflection flow and comparison with CFD , 2005 .

[20]  Raymond J. Stalker,et al.  Modern developments in hypersonic wind tunnels , 2006, The Aeronautical Journal (1968).

[21]  J. Stephenson Vibrational relaxation of NO X2Π(v = 1) in the temperature range 100–300 °K , 1974 .

[22]  M. Wollenhaupt,et al.  Testing Methodologies in the DLR High Enthalpy Shock Tunnel HEG , 1998 .

[23]  T. Mcintyre,et al.  PLIF thermometry in shock tunnel flows using a Raman-shifted tunable excimer laser , 1998 .

[24]  T. Mcintyre,et al.  Simultaneous two-wavelength holographic interferometry in a superorbital expansion tube facility. , 1997, Applied optics.

[25]  T. J. McIntyre,et al.  Near-resonant holographic interferometry of hypersonic flow , 2001 .

[26]  T. Hashimoto,et al.  Density Measurement over a Sphere in Ballistic Range , 2000 .

[27]  R. Hanson,et al.  Temperature imaging in a supersonic free jet of combustion gases with two-line OH fluorescence. , 1996, Applied optics.

[28]  S. O’Byrne,et al.  Fluorescence Visualization of Hypersonic Flow Establishment over a Blunt Fin , 2001 .

[29]  Alexis Ivan. Bishop Spectrally selective holographic interferometry techniques for flow diagnostics , 2002 .

[30]  R. Hanson,et al.  Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow. , 1993, Applied optics.

[31]  R. Hanson,et al.  Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence. , 1983, Optics letters.

[32]  D. Crosley,et al.  Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame. , 1984, Applied optics.

[33]  Paul M. Danehy,et al.  Fluorescence velocimetry of the hypersonic, separated flow over a cone , 2001 .

[34]  H. Maruyama,et al.  High-speed time-resolved color schlieren visualization of shock wave phenomena , 2005 .

[35]  J. Daily,et al.  Use of rate equations to describe laser excitation in flames. , 1977, Applied optics.

[36]  Jean-Michel Desse,et al.  Real-time color holographic interferometry. , 2002, Applied optics.

[37]  H. Rubinsztein-Dunlop,et al.  Supersonic velocimetry in a shock tube using laser enhanced ionisation and planar laser induced fluorescence , 1997 .

[38]  Stuart B. Dalziel,et al.  Whole-field density measurements by ‘synthetic schlieren’ , 2000 .

[39]  N. Mudford,et al.  Fluorescence imaging of mixing flowfields and comparisons with computational fluid dynamic simulations , 2002 .

[40]  Barry Zhang,et al.  Turbulent structure measurements by RELIEF flow tagging , 1991 .

[41]  Kazuyoshi Takayama,et al.  Simultaneous Shadow, Schlieren and Interferometric Visualization of Compressible Flows , 2006 .

[42]  Christian Rey,et al.  Particle Image Velocimetry in Mach 3.5 and 4.5 Shock-Tunnel Flows , 2002 .

[43]  A. Eckbreth Laser Diagnostics for Combustion Temperature and Species , 1988 .

[44]  Kazuyoshi Takayama,et al.  Quantitative holographic interferometry of shock-wave flows using Fourier transform fringe analysis , 1995 .

[45]  Troy N. Eichmann,et al.  Enhanced flow visualization with near-resonant holographic interferometry. , 2003, Applied optics.

[46]  H. Schardin,et al.  Kinematographie auf ruhendem Film und mit extrem hoher Bildfrequenz , 1929 .

[47]  J. Surget,et al.  Multipass Holographic Interferometer for the High Enthalpy Hypersonic Wind Tunnel F4 , 1993 .

[48]  Halina Rubinsztein-Dunlop,et al.  Experimental and numerical studies of ionizing flow in a super-orbital expansion tube , 2001 .

[49]  J. O. Berg,et al.  Rotational redistribution effect on saturated laser-induced fluorescence. , 1979, Applied optics.

[50]  G. E. A. Meier,et al.  Computerized background-oriented schlieren , 2002 .

[51]  Peter A. Jacobs,et al.  Experimental Expansion Tube Study of the Flow over a Toroidal Ballute , 2004 .

[52]  R. J. Sandeman,et al.  Absolute intensity measurements of impurity emissions in a shock tunnel and their consequences for laser-induced fluorescence experiments , 1993 .

[53]  J. Daily,et al.  Saturation effects in laser induced fluorescence spectroscopy. , 1977, Applied optics.

[54]  J. L. Durant,et al.  Collisional quenching corrections for laser-induced fluorescence measurements of NO A2Sigma(+) , 1994 .

[55]  R. J. Sandeman,et al.  Vibrational temperature measurements in a shock layer using laser induced predissociation fluorescence , 1993 .

[56]  Paul M. Danehy,et al.  Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide , 2001 .

[57]  P. Danehy,et al.  Fluorescence imaging of rotational and vibrational temperature in shock-tunnel nozzle flow , 2003 .

[58]  Clayton W. Bates,et al.  Line-width and tuning effects in resonant excitation , 1975 .

[59]  C. Vest Holographic Interferometry , 1979 .

[60]  T. J. McIntyre,et al.  Flow tagging velocimetry in a superorbital expansion tube , 2000 .

[61]  R. Hanson,et al.  Nitric-oxide planar laser-induced fluorescence applied to low-pressure hypersonic flow fields for the imaging of mixture fraction. , 2003, Applied optics.

[62]  Richard B. Miles,et al.  Megahertz visualization of compression-corner shock structures , 2001 .

[63]  Norbert Hampp,et al.  Bacteriorhodopsin as a high-resolution, high-capacity buffer for digital holographic measurements , 2004 .

[64]  Halina Rubinsztein-Dunlop,et al.  Comparison of Experimental and Numerical Studies of Ionizing Flow over a Cylinder , 2003 .

[65]  R. Boyce,et al.  Tomographic reconstruction of shock layer flows , 2007 .

[66]  R. Hanson,et al.  Multi-line fluorescence imaging of the rotational temperature field in a shock-tunnel free jet , 1996 .

[67]  Abel inversion of axially-symmetric shock wave flows , 2005 .