Strain analysis of phase transitions in (Ca,Sr)TiO3 perovskites

Abstract A single Landau free energy expansion is used to describe phase transitions in perovskites, from a cubic parent structure to tetragonal and orthorhombic structures with space groups related to the M3 and R25 points of the Pm3̅m reciprocal lattice. This expansion permits relationships between symmetry-adapted forms of the spontaneous strain and individual order parameter components to be predicted. Data from the literature for (Ca,Sr)TiO3 perovskites are analyzed in the light of these predictions. Shear strains for I4/mcm, Pnma, and Cmcm structures tend to conform to the predicted pattern. The Pm3̅m↔I4/mcm transition has nearly tricritical character as a function of temperature in CaTiO3 and more nearly second-order character as a function of composition at the Sr-rich end of the solid solution. Coupling with the volume strain appears to be both temperature and composition dependent, which may be a general feature of phase transitions in perovskites. Renormalization of fourth-order terms by changing the volume coupling coefficients could be responsible for the unusual order parameter evolution shown by CaTiO3 and for changes in thermodynamic character of the phase transitions as a function of composition. The pattern of strain variations also correlates closely with patterns of variations in heat capacity from the literature, suggesting revisions to the subsolidus phase diagram for the (Ca,Sr)TiO3 solid solution above room temperature.

[1]  R. Angel,et al.  Displacive phase transitions and spontaneous strains in oxygen deficient CaFexTi1-xO3-x/2 perovskites (0x0.40) , 2000 .

[2]  C. Howard,et al.  Powder neutron diffraction study of the high temperature phase transitions in NaTaO3 , 1999 .

[3]  B. Chakoumakos,et al.  High-temperature phase transitions in SrHfO 3 , 1999 .

[4]  E. Salje,et al.  Cubic-tetragonal phase transition in SrTiO3 revisited: Landau theory and transition mechanism , 1999 .

[5]  G. Rossetti,et al.  Calorimetric Investigation of Tricritical Behavior in Tetragonal Pb(ZrxTi1−x)O3 , 1999 .

[6]  A. Gibaud,et al.  Specific heat and latent heat of KMnF3 ferroelastic crystal , 1999 .

[7]  R. Ranjan,et al.  Novel structural features and phase transition behaviour of (Sr1-xCax)TiO3: II. X-ray diffraction studies , 1999 .

[8]  B. Chakoumakos,et al.  Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study , 1999 .

[9]  B. Chakoumakos,et al.  High-temperature phase transitions in SrZrO 3 , 1999 .

[10]  Darlington,et al.  High-temperature phases of NaNbO3 and NaTaO3. , 1999, Acta crystallographica. Section B, Structural science.

[11]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in perovskites , 1998 .

[12]  C. J. Ball,et al.  Structures in the System CaTiO3/SrTiO3 , 1998 .

[13]  Michael A. Carpenter,et al.  Elastic anomalies in minerals due to structural phase transitions , 1998 .

[14]  E. Salje,et al.  Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals , 1998 .

[15]  E. Salje,et al.  The cubic-tetragonal phase transition in strontium titanate: excess specific heat measurements and evidence for a near-tricritical, mean field type transition mechanism , 1998 .

[16]  K. Knight,et al.  Calibration of excess thermodynamic properties and elastic constant variations associated with the alpha beta phase transition in quartz , 1998 .

[17]  V. Lemanov Phase transitions in SrTiO3-based solid solutions , 1997 .

[18]  T. Matsui,et al.  High temperature phase transitions of CaTiO3 and (Ca0.85Nd0.15)TiO3 by X-ray diffractometry and differential thermal analysis , 1997 .

[19]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[20]  P. Woodward Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces , 1997 .

[21]  R. Cowley The phase transition of strontium titanate , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  S. Redfern,et al.  High-temperature structural phase transitions in perovskite , 1996 .

[23]  M. Kitajima,et al.  Vibrational Spectroscopy and X-Ray Diffraction of Perovskite Compounds Sr1−xMxTiO3(M= Ca, Mg; 0 ≤x≤ 1) , 1996 .

[24]  C. Darlington Phenomenological Theory of the Deformation of Rotated Octahedra in Perovskites , 1996 .

[25]  D. Ligny,et al.  High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites. , 1996, Physical review. B, Condensed matter.

[26]  K. Knight Structural phase transitions in BaCeO3 , 1994 .

[27]  R. Newnham Phase transitions in ferroelastic and co-elastic crystals; student edition: By Ekhard K. H. Salje. Cambridge University Press, Cambridge (1993), 240 pp. Softcover; price unavailable. ISBN 0-521-42936-6 , 1994 .

[28]  K. Leinenweber,et al.  Perovskite at high P‐T conditions: An in situ synchrotron X ray diffraction study of NaMgF3 perovskite , 1994 .

[29]  F. Guyot,et al.  High-temperature heat capacity and phase transitions of CaTiO3 perovskite , 1993 .

[30]  Yusheng Zhao,et al.  Thermal expansion and structural distortion of perovskite — data for NaMgF3 perovskite. Part I , 1993 .

[31]  Yusheng Zhao,et al.  Critical phenomena and phase transition of perovskite — data for NaMgF3 perovskite. Part II , 1993 .

[32]  Shapiro,et al.  Phase diagram of KMn1-xCaxF3 (x<0.05) determined by high-resolution x-ray scattering. , 1991, Physical review. B, Condensed matter.

[33]  E. Salje,et al.  Phase transitions in systems with strain-induced coupling between two order parameters , 1986 .

[34]  S. Stokka,et al.  Specific heat and phase diagrams for uniaxially stressed KMnF3 , 1982 .

[35]  B. Hyde,et al.  Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (L12) , 1977 .

[36]  A. Glazer,et al.  Simple ways of determining perovskite structures , 1975 .

[37]  C. Darlington,et al.  Geometrical and structural relations in the rhombohedral perovskites , 1975 .

[38]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[39]  W. Westphal,et al.  Dielectric and X-Ray Studies of CaxBa1-xTiO3 and CaxSr1-xTiO3 , 1961 .

[40]  John F Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[41]  J. Gottsmann,et al.  Phase transitions in Ca1 −xSrxTiO3 perovskites: effects of composition and temperature , 2000 .

[42]  Y. Shirota Organic materials for electronic and optoelectronic devices , 2000 .

[43]  Akademii︠a︡ medit︠s︡inskikh nauk Sssr Journal of physics , 1939 .