Global Cloud-Resolving Models

[1]  Shian-Jiann Lin,et al.  DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains , 2019, Progress in Earth and Planetary Science.

[2]  Joanna Szmelter,et al.  FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS , 2019, Geoscientific Model Development.

[3]  M. Satoh,et al.  Toward reduction of the uncertainties in climate sensitivity due to cloud processes using a global non-hydrostatic atmospheric model , 2018, Progress in Earth and Planetary Science.

[4]  Kaoru Sato,et al.  A study of the dynamical characteristics of inertia–gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model , 2018, Atmospheric Chemistry and Physics.

[5]  T. Miyakawa,et al.  CINDY2011/DYNAMO Madden-Julian oscillation successfully reproduced in global cloud/cloud-system resolving simulations despite weak tropical wavelet power , 2018, Scientific Reports.

[6]  M. Satoh,et al.  Roles of Cloud Microphysics on Cloud Responses to Sea Surface Temperatures in Radiative‐Convective Equilibrium Experiments Using a High‐Resolution Global Nonhydrostatic Model , 2018, Journal of Advances in Modeling Earth Systems.

[7]  E. Roeckner,et al.  ICON‐A, The Atmosphere Component of the ICON Earth System Model: II. Model Evaluation , 2018, Journal of Advances in Modeling Earth Systems.

[8]  G. Zängl,et al.  ICON‐A, the Atmosphere Component of the ICON Earth System Model: I. Model Description , 2018, Journal of Advances in Modeling Earth Systems.

[9]  C. Bretherton,et al.  DNS and LES for Simulating Stratocumulus: Better Together , 2018, Journal of Advances in Modeling Earth Systems.

[10]  T. Nakajima,et al.  Impact of Lateral Boundary Errors on the Simulation of Clouds with a Nonhydrostatic Regional Climate Model , 2017 .

[11]  R. Heikes,et al.  DCMIP2016: A Review of Non-hydrostatic Dynamical Core Design and Intercomparison of Participating Models , 2017 .

[12]  Daniel Klocke,et al.  Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic , 2017, Nature Geoscience.

[13]  T. Suzuki,et al.  A Madden‐Julian Oscillation event remotely accelerates ocean upwelling to abruptly terminate the 1997/1998 super El Niño , 2017 .

[14]  S. Bony,et al.  RCEMIP: Radiative Convective Equilibrium Model Inter-comparison Project , 2017 .

[15]  M. Satoh,et al.  Genesis of Super Cyclone Pam (2015): Modulation of Low-Frequency Large-Scale Circulations and the Madden–Julian Oscillation by Sea Surface Temperature Anomalies , 2017 .

[16]  William M. Putman,et al.  An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation , 2017, Quarterly journal of the Royal Meteorological Society. Royal Meteorological Society.

[17]  Jing Guo,et al.  Description of the GMAO OSSE for Weather Analysis Software Package: Version 3 , 2017 .

[18]  Bjorn Stevens,et al.  Imprint of the convective parameterization and sea‐surface temperature on large‐scale convective self‐aggregation , 2017 .

[19]  Hirofumi Tomita,et al.  Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer , 2017, Progress in Earth and Planetary Science.

[20]  Christian Kühnlein,et al.  An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics , 2017, J. Comput. Phys..

[21]  Peter D. Düben,et al.  Single Precision in Weather Forecasting Models: An Evaluation with the IFS , 2017 .

[22]  J. Mellado Cloud-Top Entrainment in Stratocumulus Clouds , 2017 .

[23]  M. Satoh,et al.  Improvement of a Cloud Microphysics Scheme for a Global Nonhydrostatic Model Using TRMM and a Satellite Simulator , 2017 .

[24]  William M. Putman,et al.  Tropical Cyclones in the 7km NASA Global Nature Run for use in Observing System Simulation Experiments. , 2017, Journal of atmospheric and oceanic technology.

[25]  Hartwig Deneke,et al.  Large‐eddy simulations over Germany using ICON: a comprehensive evaluation , 2017 .

[26]  J. Russell,et al.  Impacts of SABER CO2‐based eddy diffusion coefficients in the lower thermosphere on the ionosphere/thermosphere , 2016 .

[27]  Jian Lu,et al.  High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6 , 2016 .

[28]  Kaoru Sato,et al.  Quasi 12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6 °E, 69.0 °S) , 2016 .

[29]  H. Yashiro,et al.  Precursors of deep moist convection in a subkilometer global simulation , 2016 .

[30]  M. Satoh,et al.  Influence of topography on temperature variations in the tropical tropopause layer , 2016 .

[31]  William M. Putman,et al.  Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation , 2016 .

[32]  Shintaro Kawahara,et al.  Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results , 2016 .

[33]  Koji Terasaki,et al.  Performance evaluation of a throughput-aware framework for ensemble dataassimilation: the case of NICAM-LETKF , 2016 .

[34]  William M. Putman,et al.  A global perspective of atmospheric carbon dioxide concentrations , 2016, Parallel Comput..

[35]  Hirofumi Tomita,et al.  Performance Analysis and Optimization of Nonhydrostatic ICosahedral Atmospheric Model (NICAM) on the K Computer and TSUBAME2.5 , 2016, PASC.

[36]  Wojciech W. Grabowski,et al.  Towards Global Large Eddy Simulation: Super-Parameterization Revisited , 2016 .

[37]  Mats Hamrud,et al.  A finite-volume module for simulating global all-scale atmospheric flows , 2016, J. Comput. Phys..

[38]  T. Nakajima,et al.  Unrealistically pristine air in the Arctic produced by current global scale models , 2016, Scientific Reports.

[39]  A. Pier Siebesma,et al.  The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. , 2016 .

[40]  J. Chern,et al.  "On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models". , 2016, Journal of hydrometeorology.

[41]  T. Matsuno Prologue: Tropical Meteorology 1960-2010—Personal Recollections , 2016 .

[42]  Tomoe Nasuno,et al.  Response of tropical cyclone activity and structure to a global warming in a high-resolution global nonhydrostatic model , 2016 .

[43]  Tsuyoshi Yamaura,et al.  Resolution dependence of deep convections in a global simulation from over 10-kilometer to sub-kilometer grid spacing , 2016, Progress in Earth and Planetary Science.

[44]  N. C. Privé,et al.  Temporal and Spatial Interpolation Errors of High-Resolution Modeled Atmospheric Fields , 2016 .

[45]  Tsuyoshi Yamaura,et al.  Resolution Dependence of the Diurnal Cycle of Precipitation Simulated by a Global Cloud-System Resolving Model , 2016 .

[46]  A. Okuyama,et al.  An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites , 2016 .

[47]  T. Nakajima,et al.  Error and Energy Budget Analysis of a Nonhydrostatic Stretched-Grid Global Atmospheric Model , 2015 .

[48]  Piotr K. Smolarkiewicz,et al.  Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales , 2015 .

[49]  Tomoe Nasuno,et al.  A 20-Year Climatology of a NICAM AMIP-Type Simulation , 2015 .

[50]  Günther Zängl,et al.  Large eddy simulation using the general circulation model ICON , 2015 .

[51]  Tsuyoshi Yamaura,et al.  Does convection vary in different cloud disturbances? , 2015 .

[52]  R. Leung,et al.  A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges , 2015, Reviews of geophysics.

[53]  D. Waliser,et al.  Vertical structure and physical processes of the Madden‐Julian oscillation: Synthesis and summary , 2015 .

[54]  M. Satoh,et al.  Improvement in Global Cloud-System-Resolving Simulations by Using a Double-Moment Bulk Cloud Microphysics Scheme , 2015 .

[55]  Michael G. Bosilovich,et al.  Evaluation of the 7-km GEOS-5 Nature Run , 2015 .

[56]  Tomoe Nasuno,et al.  Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model , 2015 .

[57]  G. Bellon,et al.  The double ITCZ bias in CMIP5 models: interaction between SST, large-scale circulation and precipitation , 2015, Climate Dynamics.

[58]  C. Kühnlein,et al.  The modelling infrastructure of the Integrated Forecasting System : Recent advances and future challenges , 2015 .

[59]  G. Zängl,et al.  The ICON (ICOsahedral Non‐hydrostatic) modelling framework of DWD and MPI‐M: Description of the non‐hydrostatic dynamical core , 2015 .

[60]  Masaki Satoh,et al.  Constraint on Future Change in Global Frequency of Tropical Cyclones due to Global Warming , 2015 .

[61]  T. Miyoshi,et al.  GPM/DPR Precipitation Compared with a 3.5-km-Resolution NICAM Simulation , 2014 .

[62]  Chris Snyder,et al.  Atmospheric Kinetic Energy Spectra from Global High-Resolution Nonhydrostatic Simulations , 2014 .

[63]  Takemasa Miyoshi,et al.  The Non-hydrostatic Icosahedral Atmospheric Model: description and development , 2014, Progress in Earth and Planetary Science.

[64]  Piotr K. Smolarkiewicz,et al.  Anelastic and Compressible Simulation of Moist Deep Convection , 2014 .

[65]  Peter D. Düben,et al.  Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware , 2014 .

[66]  N. Wedi,et al.  Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea? , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  M. Satoh,et al.  Evaluation of Precipitating Hydrometeor Parameterizations in a Single-Moment Bulk Microphysics Scheme for Deep Convective Systems over the Tropical Central Pacific , 2014 .

[68]  T. Nakajima,et al.  Simultaneous evaluation of ice cloud microphysics and nonsphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in situ observations , 2014 .

[69]  Hirofumi Tomita,et al.  Madden–Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer , 2014, Nature Communications.

[70]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[71]  D. Randall,et al.  Beyond deadlock , 2013 .

[72]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[73]  H. Yashiro,et al.  Deep moist atmospheric convection in a subkilometer global simulation , 2013 .

[74]  M. Blackburn,et al.  Context and Aims of the Aqua-Planet Experiment (Special Issue on The Aqua-Planet Experiment Project (APE) and Related Researches) , 2013 .

[75]  Hajime Okamoto,et al.  Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO , 2013 .

[76]  M. Blackburn,et al.  The Aqua-Planet Experiment (APE): CONTROL SST Simulation , 2013, Journal of the Meteorological Society of Japan. Ser. II.

[77]  Günther Zängl,et al.  The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version , 2013 .

[78]  S. Bony,et al.  What Are Climate Models Missing? , 2013, Science.

[79]  Mats Hamrud,et al.  Revolutionizing Climate Modeling with Project Athena: A Multi-Institutional, International Collaboration , 2013 .

[80]  Shian-Jiann Lin,et al.  Seasonal Predictions of Tropical Cyclones Using a 25-km-Resolution General Circulation Model , 2013 .

[81]  Shian-Jiann Lin,et al.  A Two-Way Nested Global-Regional Dynamical Core on the Cubed-Sphere Grid , 2013 .

[82]  M. Yamamoto,et al.  Analysis of the tropical tropopause layer using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM): 2. An experiment under the atmospheric conditions of December 2006 to January 2007 , 2012 .

[83]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[84]  H. Tomita,et al.  Quantitative Assessment of Diurnal Variation of Tropical Convection Simulated by a Global Nonhydrostatic Model without Cumulus Parameterization , 2012 .

[85]  C. Schär,et al.  Bulk Convergence of Cloud-Resolving Simulations of Moist Convection over Complex Terrain , 2012 .

[86]  M. Satoh,et al.  An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators , 2012 .

[87]  Ronald M. Errico,et al.  Cloud Coverage in the Joint OSSE Nature Run , 2012 .

[88]  Nils Wedi,et al.  High-Resolution Global Climate Simulations with the ECMWF Model in Project Athena: Experimental Design, Model Climate, and Seasonal Forecast Skill , 2012 .

[89]  Hiroaki Miura,et al.  Convective Momentum Transport by Rainbands within a Madden-Julian Oscillation in a Global Nonhydrostatic Model with Explicit Deep Convective Processes. Part I: Methodology and General Results , 2012 .

[90]  William M. Putman,et al.  Cloud‐system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS‐5) , 2011 .

[91]  Yuqing Wang,et al.  Multiscale Interactions in the Life Cycle of a Tropical Cyclone Simulated in a Global Cloud-System-Resolving Model. Part II: System-Scale and Mesoscale Processes , 2010 .

[92]  Omar M. Knio,et al.  Regime of Validity of Soundproof Atmospheric Flow Models , 2010 .

[93]  M. Satoh,et al.  Analysis of the tropical tropopause layer using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM): Aqua planet experiments , 2010 .

[94]  S. Gualdi,et al.  The Double-ITCZ Syndrome in Coupled General Circulation Models: The Role of Large-Scale Vertical Circulation Regimes , 2010 .

[95]  Hiroaki Miura,et al.  Diurnal Cycle of Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model , 2009 .

[96]  Bin Wang,et al.  Asian summer monsoon simulated by a global cloud‐system‐resolving model: Diurnal to intra‐seasonal variability , 2009 .

[97]  M. Satoh,et al.  Characteristics of the Kinetic Energy Spectrum of NICAM Model Atmosphere , 2009 .

[98]  Hiroaki Miura,et al.  Characteristics of Cloud Size of Deep Convection Simulated by a Global Cloud Resolving Model over the Western Tropical Pacific( The International Workshop on High-Resolution and Cloud Modeling, 2006) , 2008 .

[99]  Hirofumi Tomita,et al.  A Stretched Icosahedral Grid by a New Grid Transformation , 2008 .

[100]  Hiroaki Miura,et al.  Global cloud‐system‐resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones , 2008 .

[101]  Hirohiko Masunaga,et al.  A joint satellite and global cloud‐resolving model analysis of a Madden‐Julian Oscillation event: Model diagnosis , 2008 .

[102]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[103]  Hiroaki Miura,et al.  A Madden-Julian Oscillation Event Realistically Simulated by a Global Cloud-Resolving Model , 2007, Science.

[104]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[105]  Jialin Lin,et al.  The Double-ITCZ Problem in IPCC AR4 Coupled GCMs: Ocean–Atmosphere Feedback Analysis , 2007 .

[106]  D. Williamson The Evolution of Dynamical Cores for Global Atmospheric Models(125th Anniversary Issue of the Meteorological Society of Japan) , 2007 .

[107]  D. Randall,et al.  Simulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes , 2005 .

[108]  C. Bretherton,et al.  Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus , 2005 .

[109]  H. Tomita,et al.  A global cloud‐resolving simulation: Preliminary results from an aqua planet experiment , 2005 .

[110]  Hiroaki Miura,et al.  Development of a global cloud resolving model - a multi-scale structure of tropical convections - , 2005 .

[111]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[112]  Hirofumi Tomita,et al.  A new dynamical framework of nonhydrostatic global model using the icosahedral grid , 2004 .

[113]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[114]  D. Randall,et al.  Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities , 2003 .

[115]  B. Stevens,et al.  Observations, experiments, and large eddy simulation , 2001 .

[116]  William R. Cotton,et al.  Multiscale Evolution of a Derecho-Producing Mesoscale Convective System , 1998 .

[117]  A. Tompkins,et al.  Radiative–convective equilibrium in a three‐dimensional cloud‐ensemble model , 1998 .

[118]  Shian-Jiann Lin,et al.  An explicit flux‐form semi‐lagrangian shallow‐water model on the sphere , 1997 .

[119]  Shian-Jiann Lin,et al.  A finite‐volume integration method for computing pressure gradient force in general vertical coordinates , 1997 .

[120]  W. Tao,et al.  GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating Convective Cloud Systems , 1997 .

[121]  W. Skamarock,et al.  The resolution dependence of explicitly modeled convective systems , 1997 .

[122]  Wojciech W. Grabowski,et al.  Cloud-Resolving Modeling of Tropical Cloud Systems during Phase III of GATE. Part I: Two-Dimensional Experiments. , 1996 .

[123]  David A. Randall,et al.  Explicit Simulation of Cumulus Ensembles with the GATE Phase III Data: Comparison with Observations , 1996 .

[124]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[125]  A. Betts,et al.  The GEWEX Cloud System Study (GCSS) , 1993 .

[126]  J. Dudhia,et al.  A Three-Dimensional Numerical Study of an Oklahoma Squall Line Containing Right-Flank Supercells , 1989 .

[127]  W. Cotton,et al.  Numerical Study of an Observed Orogenic Mesoscale Convective System. Part 1: Simulated Genesis and Comparison with Observations , 1989 .

[128]  Kensuke Nakajima,et al.  Numerical Experiments Concerning the Origin of Cloud Clusters in the Tropical Atmosphere , 1988 .

[129]  Steven K. Krueger,et al.  Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer , 1988 .

[130]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[131]  Y. Ogura,et al.  Response of Tradewind Cumuli to Large-Scale Processes , 1980 .

[132]  Terry L. Clark,et al.  Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations , 1979 .

[133]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[134]  Robert E. Schlesinger,et al.  A Three-Dimensional Numerical Model of an Isolated Deep Convective Cloud: Preliminary Results , 1975 .

[135]  I. Orlanski A rational subdivision of scales for atmospheric processes , 1975 .

[136]  R. P. Pearce,et al.  A three‐dimensional primitive equation model of cumulonimbus convection , 1974 .

[137]  David L. Williamson,et al.  Integration of the barotropic vorticity equation on a spherical geodesic grid , 1968 .

[138]  Akio Arakawa,et al.  Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .

[139]  Yoshmitsu Ogura,et al.  The Evolution of a Moist Convective Element in a Shallow, Conditionally Unstable Atmosphere: A Numerical Calculation , 1963 .