Two-dimensional electron-gas density in AlXGa1−XN/GaN heterostructure field-effect transistors

We have calculated maximum two-dimensional electron-gas densities in AlXGa1−XN/GaN heterostructure field-effect transistors with wurtzite crystal structures in (0001) orientation, by self-consistently solving Schrodinger’s and Poisson’s equations, taking the piezoelectric effect into account. In order to obtain a guideline for increasing electron densities in the devices, we have examined dependences of the maximum electron densities on both Al compositions of AlXGa1−XN layers and lattice relaxations at the heterointerfaces. The maximum electron density was found to depend more strongly on the lattice relaxation than on the Al composition, which determines the conduction-band discontinuity. Controlling the lattice relaxation is shown to be crucial for obtaining high electron densities in the devices.

[1]  Michael S. Shur,et al.  The influence of the strain‐induced electric field on the charge distribution in GaN‐AlN‐GaN structure , 1993 .

[2]  The influence of the deformation on the two-dimensional electron gas density in GaN–AlGaN heterostructures , 1998 .

[3]  H. Morkoç,et al.  High temperature characteristics of AlGaN/GaN modulation doped field‐effect transistors , 1996 .

[4]  I. Adesida,et al.  High-power microwave 0.25-μm gate doped-channel GaN/AlGaN heterostructure field effect transistor , 1998, IEEE Electron Device Letters.

[5]  M. Shur,et al.  Piezoresistive effect in GaN–AlN–GaN structures , 1997 .

[6]  Joan M. Redwing,et al.  Piezoelectric charge densities in AlGaN/GaN HFETs , 1997 .

[7]  Umesh K. Mishra,et al.  VERY HIGH BREAKDOWN VOLTAGE AND LARGE TRANSCONDUCTANCE REALIZED ON GAN HETEROJUNCTION FIELD EFFECT TRANSISTORS , 1996 .

[8]  Peter M. Asbeck,et al.  Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors , 1997 .

[9]  I. Adesida,et al.  DC and microwave performance of high-current AlGaN/GaN heterostructure field effect transistors grown on p-type SiC substrates , 1998, IEEE Electron Device Letters.

[10]  Y.-F. Wu,et al.  High Al-content AlGaN/GaN MODFETs for ultrahigh performance , 1998, IEEE Electron Device Letters.

[11]  M. Tischler,et al.  TWO-DIMENSIONAL ELECTRON GAS PROPERTIES OF ALGAN/GAN HETEROSTRUCTURES GROWN ON 6H-SIC AND SAPPHIRE SUBSTRATES , 1996 .

[12]  M. Shur,et al.  Elastic strain relaxation in GaNAlNGaN semiconductorinsulatorsemiconductor structures , 1995 .

[13]  Izabella Grzegory,et al.  Elastic constants of gallium nitride , 1996 .

[14]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[15]  M.A. Khan,et al.  Microwave operation of GaN/AlGaN-doped channel heterostructure field effect transistors , 1996, IEEE Electron Device Letters.

[16]  Joan M. Redwing,et al.  AlGaN/GaN HEMTs grown on SiC substrates , 1997 .

[17]  H. Sakaki,et al.  A New Highly-Conductive (AlGa)As/GaAs/(AlGa)As Selectively-Doped Double-Heterojunction Field-Effect Transistor (SD-DH-FET) , 1984 .

[18]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[19]  Michael S. Shur,et al.  Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices , 1997 .