A reproducing kernel enhanced approach for peridynamic solutions

Abstract The most common discretization method for peridynamic models used in engineering problems is the node-based meshfree approach. This method discretizes peridynamic domains by a set of nodes, each associated with a nodal cell with a characteristic volume, leading to a particle-based description of continuum systems. The behavior of each particle is then considered representative of its cell. This limits the convergence rate to the first order. In this paper, we introduce a reproducing kernel (RK) approximation to the field variables in the peridynamic equations to increase the order of convergence of peridynamic numerical solutions. The numerical results demonstrate improved convergence rates in static peridynamic problems using the proposed method.

[1]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[2]  Pablo Seleson Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations , 2014 .

[3]  F. Bobaru,et al.  Characteristics of dynamic brittle fracture captured with peridynamics , 2011 .

[4]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[5]  Youn Doh Ha,et al.  ADAPTIVE REFINEMENT AND MULTISCALEMODELING IN 2D PERIDYNAMICS , 2011 .

[6]  Jifeng Xu,et al.  Peridynamic Analysis of Impact Damage in Composite Laminates , 2008 .

[7]  Qiang Du,et al.  A Multiscale Implementation Based on Adaptive Mesh Refinement for the Nonlocal Peridynamics Model in One Dimension , 2016, Multiscale Model. Simul..

[8]  E. Madenci,et al.  Peridynamic modeling of delamination growth in composite laminates , 2015 .

[9]  Bo Ren,et al.  A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis , 2017 .

[10]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[11]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[12]  John Anthony Mitchell,et al.  A position-aware linear solid constitutive model for peridynamics , 2015 .

[13]  Ted Belytschko,et al.  A meshfree unification: reproducing kernel peridynamics , 2014, Computational Mechanics.

[14]  Hui-Ping Wang,et al.  A Lagrangian reproducing kernel particle method for metal forming analysis , 1998 .

[15]  Qiang Du,et al.  Analysis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations , 2013, SIAM J. Numer. Anal..

[16]  Hong Wang,et al.  A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model , 2012, J. Comput. Phys..

[17]  S. Hiermaier,et al.  On the similarity of meshless discretizations of Peridynamics and Smooth-Particle Hydrodynamics , 2014, 1401.8268.

[18]  Qiang Du,et al.  The bond-based peridynamic system with Dirichlet-type volume constraint , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[19]  E. Oterkus,et al.  Modelling of Granular Fracture in Polycrystalline Materials Using Ordinary State-Based Peridynamics , 2016, Materials.

[20]  Li Tian,et al.  A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models , 2013, Math. Comput..

[21]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[22]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[23]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .

[24]  Burak Aksoylu,et al.  Variational theory and domain decomposition for nonlocal problems , 2009, Appl. Math. Comput..

[25]  Nicolas Sau,et al.  Peridynamic modeling of concrete structures , 2007 .

[26]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .

[27]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[28]  Steven F. Henke,et al.  Mesh sensitivity in peridynamic simulations , 2014, Comput. Phys. Commun..

[29]  Mazdak Ghajari,et al.  A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media , 2014 .

[30]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[31]  Erkan Oterkus,et al.  Peridynamic modeling of composite laminates under explosive loading , 2016 .

[32]  Pizhong Qiao,et al.  Damage and progressive failure of concrete structures using non-local peridynamic modeling , 2011 .

[33]  Etienne Emmrich,et al.  The peridynamic equation and its spatial discretisation , 2007 .

[34]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[35]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[36]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[37]  Steven J. Plimpton,et al.  Implementing peridynamics within a molecular dynamics code , 2007, Comput. Phys. Commun..

[38]  Erkan Oterkus,et al.  Peridynamic Theory and Its Applications , 2013 .

[39]  Sheng-Wei Chi,et al.  Meshfree Methods: Progress Made after 20 Years , 2017 .

[40]  Michael L. Parks,et al.  ON THE ROLE OF THE INFLUENCE FUNCTION IN THE PERIDYNAMIC THEORY , 2011 .

[41]  R. Lehoucq,et al.  Convergence of Peridynamics to Classical Elasticity Theory , 2008 .

[42]  Max Gunzburger,et al.  A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions , 2016 .

[43]  E. Madenci,et al.  Prediction of crack paths in a quenched glass plate by using peridynamic theory , 2009 .

[44]  David John Littlewood,et al.  A nonlocal approach to modeling crack nucleation in AA 7075-T651. , 2011 .

[45]  Qiang Du,et al.  On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models , 2016 .

[46]  Erkan Oterkus,et al.  Peridynamic analysis of fiber-reinforced composite materials , 2012 .

[47]  David John Littlewood,et al.  Numerical Tools for Improved Convergence of Meshfree Peridynamic Discretizations , 2018 .

[48]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[49]  Wing Kam Liu,et al.  Implementation of boundary conditions for meshless methods , 1998 .

[50]  Weimin Han,et al.  A reproducing kernel method with nodal interpolation property , 2003 .

[51]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[52]  Philippe H. Geubelle,et al.  Handbook of Peridynamic Modeling , 2017 .

[53]  Hui-Ping Wang,et al.  New boundary condition treatments in meshfree computation of contact problems , 2000 .

[54]  Stewart Andrew Silling,et al.  Crack nucleation in a peridynamic solid , 2010 .

[55]  Youn Doh Ha,et al.  Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites , 2012 .

[56]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[57]  Richard B. Lehoucq,et al.  A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems , 2010, Multiscale Model. Simul..

[58]  E. Madenci,et al.  Peridynamics for predicting damage and its growth in composites , 2017 .

[59]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[60]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[61]  Pablo Seleson,et al.  Convergence studies in meshfree peridynamic simulations , 2016, Comput. Math. Appl..

[62]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .