Homogenization of a parabolic equation in perforated domain with Neumann boundary condition

AbstractIn this article, we study the homogenization of the family of parabolic equations over periodically perforated domains $$\begin{gathered} \partial _t b(\tfrac{x}{\varepsilon },u_\varepsilon ) - diva(\tfrac{x}{\varepsilon },u_\varepsilon ,\nabla u_\varepsilon ) = f(x,t) in \Omega _\varepsilon \times (0,T), \hfill \\ a(\tfrac{x}{\varepsilon },u_\varepsilon ,\nabla u_\varepsilon ) \cdot v_\varepsilon = 0 on \partial S_\varepsilon \times (0,T), \hfill \\ u_\varepsilon = 0 on \partial \Omega \times (0,T), \hfill \\ u_\varepsilon (x,0) = u_0 (x) in \Omega _\varepsilon \hfill \\ \end{gathered} $$ . Here, Ωɛ=ΩSɛ is a periodically perforated domain. We obtain the homogenized equation and corrector results. The homogenization of the equations on a fixed domain was studied by the authors [15]. The homogenization for a fixed domain and $$b(\tfrac{x}{\varepsilon },u_\varepsilon ) \equiv b(u_\varepsilon )$$ has been done by Jian [11].

[1]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[2]  Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains , 2002, math/0205225.

[3]  Gilles A. Francfort,et al.  Correctors for the homogenization of the wave and heat equations , 1992 .

[4]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[5]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[6]  Constantin Buse,et al.  A new proof for a Rolewicz's type theorem: An evolution semigroup approach , 2001 .

[7]  Ralph E. Showalter,et al.  TWO-SCALE CONVERGENCE OF A MODEL FOR FLOW IN A PARTIALLY FISSURED MEDIUM , 1999 .

[8]  Ulrich Hornung Applications of the Homogenization Method to Flow and Transport in Porous Media , 1991 .

[9]  M. Avellaneda,et al.  Compactness methods in the theory of homogenization , 1987 .

[10]  Juan Casado-Díaz,et al.  Two-scale convergence for nonlinear Dirichlet problems in perforated domains , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[12]  A. K. Nandakumaran,et al.  Homogenization of a nonlinear degenerate parabolic dierential equation , 2001 .

[13]  Todd Arbogast,et al.  Derivation of the double porosity model of single phase flow via homogenization theory , 1990 .

[14]  G. Allaire,et al.  Homogenization of the Neumann problem with nonisolated holes , 1993 .

[15]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[16]  V. Zhikov,et al.  G-convergence of parabolic operators , 1981 .

[17]  Hi Jun Choe,et al.  Regularity of Solutions to the Navier-Stokes Equation , 1999 .

[18]  On the homogenization of degenerate parabolic equations , 2000 .

[19]  R. Showalter,et al.  Single Phase Flow in Partially Fissured Media , 1997 .

[20]  Nicola Fusco,et al.  On the homogenization of quasilinear divergence structure operators , 1986 .

[21]  Correctors for flow in a partially fissured medium. , 1999 .

[22]  G. Allaire Homogenization and two-scale convergence , 1992 .

[23]  Andrea Braides,et al.  Separation of Scales and Almost-Periodic Effects in the Asymptotic Behaviour of Perforated Periodic Media , 2001 .