Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics

[1]  S. Andersson,et al.  Crystallographic Shear and Diffusion Paths in Certain Higher Oxides of Niobium, Tungsten, Molybdenum and Titanium , 1966, Nature.

[2]  K. Udayakumar,et al.  Structural Aspects of Phase Equilibria in the Strontium‐Titanium‐Oxygen System , 1988 .

[3]  P. Kužel,et al.  High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  James S. Horwitz,et al.  Microwave properties of Sr0.5Ba0.5TiO3 thin‐film interdigitated capacitors , 1998 .

[5]  F. Kadlec,et al.  Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series , 2003 .

[6]  V. Gopalan,et al.  Phase transitions and domain structures in strained pseudocubic (100)SrTiO3thin films , 2006 .

[7]  S. Alpay,et al.  Compositionally graded ferroelectric multilayers for frequency agile tunable devices , 2009, Journal of Materials Science.

[8]  C. Fennie,et al.  Interface control of emergent ferroic order in Ruddlesden-Popper Sr(n+1)Ti(n)O(3n+1). , 2011, Physical review letters.

[9]  J. Booth,et al.  Microwave-frequency loss and dispersion in ferroelectric Ba0.3Sr0.7TiO3 thin films , 2005 .

[10]  Lu,et al.  Frequency dependence of the complex dielectric permittivity of ferroelectric relaxors. , 1995, Physical review. B, Condensed matter.

[11]  A. Tagantsev,et al.  Ferroelectric Materials for Microwave Tunable Applications , 2003 .

[12]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[13]  Spartak Gevorgian,et al.  Do we really need ferroelectrics in paraelectric phase only in electrically controlled microwave devices , 2001 .

[14]  C. M. Folkman,et al.  Single domain strain relaxed PrScO3 template on miscut substrates , 2006 .

[15]  R. Tilley An electron microscope study of perovskite-related oxides in the SrTiO system , 1977 .

[16]  Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices , 2002, cond-mat/0211421.

[17]  S. N. Ruddlesden,et al.  The compound Sr3Ti2O7 and its structure , 1958 .

[18]  D. Schlom,et al.  RHEED Intensity Oscillations for the Stoichiometric Growth of SrTiO3 Thin Films by Reactive Molecular Beam Epitaxy , 2000 .

[19]  Tetsuro Nakamura,et al.  On the perovskite-related materials of high dielectric permittivity with small temperature dependence and low dielectric loss , 1997 .

[20]  Ian M. Reaney,et al.  Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1 , 2001 .

[21]  A. Sirenko,et al.  Oxide Thin Films for Tunable Microwave Devices , 2000 .

[22]  Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles , 2004, cond-mat/0407077.

[23]  R. Martin,et al.  Ab initio determination of static, dynamic and dielectric properties of semiconductors , 1983 .

[24]  V. Gopalan,et al.  Phase transitions and domain structures in strained pseudocubic ( 100 ) SrTiO 3 thin films , 2006 .

[25]  D. Muller,et al.  Effect of reduced dimensionality on the optical band gap of SrTiO3 , 2013 .

[26]  M. Ervin,et al.  La doped Ba1−xSrxTiO3 thin films for tunable device applications , 2001 .

[27]  J. Booth,et al.  A Compact Variable-Temperature Broadband Series-Resistor Calibration , 2011, IEEE Transactions on Microwave Theory and Techniques.

[28]  I. Reaney,et al.  Temperature Dependence of Microwave and THz Dielectric Response in Srn + 1TinO3n + 1 (n = 1–4) , 2004, cond-mat/0401425.

[29]  M. Lancaster,et al.  Barium strontium titanate thin film varactors for room-temperature microwave device applications , 2008 .

[30]  J. Perez-Mato,et al.  Mode crystallography of distorted structures. , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[31]  J. Haeni Room‐Temperature Ferroelectricity in Strained SrTiO3. , 2004 .

[32]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[33]  S. N. Ruddlesden,et al.  New compounds of the K2NIF4 type , 1957 .

[34]  T. Arias,et al.  Structural phase transitions in Ruddlesden-Popper phases of strontium titanate: Ab initio and modulated Ginzburg-Landau approaches , 2010, 1008.3332.

[35]  M. Ervin,et al.  Low dielectric loss and enhanced tunability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods , 2003 .

[36]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  D. Schlom,et al.  Cheap and stable titanium source for use in oxide molecular beam epitaxy systems , 1996 .

[38]  Jack C. M. Wang,et al.  An optimal vector-network-analyzer calibration algorithm , 2003 .

[39]  R. Marks A multiline method of network analyzer calibration , 1991 .

[40]  AB initio phonon dispersion curves and interatomic force constants of barium titanate , 1997, cond-mat/9706294.

[41]  G. Shirane,et al.  Neutron elastic diffuse scattering study of Pb „ Mg , 2004 .

[42]  B. Veličkov,et al.  Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3 , 2007 .

[43]  R. Tilley,et al.  Correlation between dielectric constant and defect structure of non-stoichiometric solids , 1977, Nature.

[44]  J. S. Anderson,et al.  Point Defects and Extended Defects in Niobium Oxides , 1973, Nature.

[45]  J. Carru,et al.  Dispersion and loss of ferroelectric Ba0.5Sr0.5TiO3 thin films up to 110 GHz , 2008 .

[46]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[47]  R. Uecker,et al.  Properties of rare-earth scandate single crystals (Re = Nd-Dy) , 2008 .

[48]  Spartak Gevorgian,et al.  Tunable microwave devices based on bulk and thin film ferroelectrics , 1998 .

[49]  K. Udayakumar,et al.  Non-stoichiometry in alkaline earth excess alkaline earth titanates , 1989 .