Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics
暂无分享,去创建一个
J. D. Brock | D. Muller | Yongsam Kim | L. Kourkoutis | C. Fennie | V. Gopalan | J. Booth | I. Takeuchi | X. Xi | R. Uecker | N. Benedek | D. Schlom | D. Nuzhnyy | M. Biegalski | Y. Nie | S. Kamba | J. Mundy | Che-hui Lee | Ye Zhu | N. Orloff | E. Rocas | V. Goian | Jingshu Zhang | M. Bernhagen | T. Birol | Ryan C. Haislmaier | E. Vlahos | J. Brock
[1] S. Andersson,et al. Crystallographic Shear and Diffusion Paths in Certain Higher Oxides of Niobium, Tungsten, Molybdenum and Titanium , 1966, Nature.
[2] K. Udayakumar,et al. Structural Aspects of Phase Equilibria in the Strontium‐Titanium‐Oxygen System , 1988 .
[3] P. Kužel,et al. High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[4] James S. Horwitz,et al. Microwave properties of Sr0.5Ba0.5TiO3 thin‐film interdigitated capacitors , 1998 .
[5] F. Kadlec,et al. Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series , 2003 .
[6] V. Gopalan,et al. Phase transitions and domain structures in strained pseudocubic (100)SrTiO3thin films , 2006 .
[7] S. Alpay,et al. Compositionally graded ferroelectric multilayers for frequency agile tunable devices , 2009, Journal of Materials Science.
[8] C. Fennie,et al. Interface control of emergent ferroic order in Ruddlesden-Popper Sr(n+1)Ti(n)O(3n+1). , 2011, Physical review letters.
[9] J. Booth,et al. Microwave-frequency loss and dispersion in ferroelectric Ba0.3Sr0.7TiO3 thin films , 2005 .
[10] Lu,et al. Frequency dependence of the complex dielectric permittivity of ferroelectric relaxors. , 1995, Physical review. B, Condensed matter.
[11] A. Tagantsev,et al. Ferroelectric Materials for Microwave Tunable Applications , 2003 .
[12] James F. Scott,et al. Domain wall nanoelectronics , 2012 .
[13] Spartak Gevorgian,et al. Do we really need ferroelectrics in paraelectric phase only in electrically controlled microwave devices , 2001 .
[14] C. M. Folkman,et al. Single domain strain relaxed PrScO3 template on miscut substrates , 2006 .
[15] R. Tilley. An electron microscope study of perovskite-related oxides in the SrTiO system , 1977 .
[16] Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices , 2002, cond-mat/0211421.
[17] S. N. Ruddlesden,et al. The compound Sr3Ti2O7 and its structure , 1958 .
[18] D. Schlom,et al. RHEED Intensity Oscillations for the Stoichiometric Growth of SrTiO3 Thin Films by Reactive Molecular Beam Epitaxy , 2000 .
[19] Tetsuro Nakamura,et al. On the perovskite-related materials of high dielectric permittivity with small temperature dependence and low dielectric loss , 1997 .
[20] Ian M. Reaney,et al. Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1 , 2001 .
[21] A. Sirenko,et al. Oxide Thin Films for Tunable Microwave Devices , 2000 .
[22] Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles , 2004, cond-mat/0407077.
[23] R. Martin,et al. Ab initio determination of static, dynamic and dielectric properties of semiconductors , 1983 .
[24] V. Gopalan,et al. Phase transitions and domain structures in strained pseudocubic ( 100 ) SrTiO 3 thin films , 2006 .
[25] D. Muller,et al. Effect of reduced dimensionality on the optical band gap of SrTiO3 , 2013 .
[26] M. Ervin,et al. La doped Ba1−xSrxTiO3 thin films for tunable device applications , 2001 .
[27] J. Booth,et al. A Compact Variable-Temperature Broadband Series-Resistor Calibration , 2011, IEEE Transactions on Microwave Theory and Techniques.
[28] I. Reaney,et al. Temperature Dependence of Microwave and THz Dielectric Response in Srn + 1TinO3n + 1 (n = 1–4) , 2004, cond-mat/0401425.
[29] M. Lancaster,et al. Barium strontium titanate thin film varactors for room-temperature microwave device applications , 2008 .
[30] J. Perez-Mato,et al. Mode crystallography of distorted structures. , 2010, Acta crystallographica. Section A, Foundations of crystallography.
[31] J. Haeni. Room‐Temperature Ferroelectricity in Strained SrTiO3. , 2004 .
[32] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[33] S. N. Ruddlesden,et al. New compounds of the K2NIF4 type , 1957 .
[34] T. Arias,et al. Structural phase transitions in Ruddlesden-Popper phases of strontium titanate: Ab initio and modulated Ginzburg-Landau approaches , 2010, 1008.3332.
[35] M. Ervin,et al. Low dielectric loss and enhanced tunability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods , 2003 .
[36] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[37] D. Schlom,et al. Cheap and stable titanium source for use in oxide molecular beam epitaxy systems , 1996 .
[38] Jack C. M. Wang,et al. An optimal vector-network-analyzer calibration algorithm , 2003 .
[39] R. Marks. A multiline method of network analyzer calibration , 1991 .
[40] AB initio phonon dispersion curves and interatomic force constants of barium titanate , 1997, cond-mat/9706294.
[41] G. Shirane,et al. Neutron elastic diffuse scattering study of Pb „ Mg , 2004 .
[42] B. Veličkov,et al. Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3 , 2007 .
[43] R. Tilley,et al. Correlation between dielectric constant and defect structure of non-stoichiometric solids , 1977, Nature.
[44] J. S. Anderson,et al. Point Defects and Extended Defects in Niobium Oxides , 1973, Nature.
[45] J. Carru,et al. Dispersion and loss of ferroelectric Ba0.5Sr0.5TiO3 thin films up to 110 GHz , 2008 .
[46] A. Tagantsev,et al. Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.
[47] R. Uecker,et al. Properties of rare-earth scandate single crystals (Re = Nd-Dy) , 2008 .
[48] Spartak Gevorgian,et al. Tunable microwave devices based on bulk and thin film ferroelectrics , 1998 .
[49] K. Udayakumar,et al. Non-stoichiometry in alkaline earth excess alkaline earth titanates , 1989 .