Radical S-adenosylmethionine maquette chemistry: Cx3Cx2C peptide coordinated redox active [4Fe–4S] clusters

[1]  A. Byer,et al.  The Elusive 5'-Deoxyadenosyl Radical: Captured and Characterized by EPR and ENDOR Spectroscopies. , 2019, Journal of the American Chemical Society.

[2]  Rebecca Hanscam,et al.  Secondary structure analysis of peptides with relevance to iron–sulfur cluster nesting , 2018, J. Comput. Chem..

[3]  B. Hoffman,et al.  Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily. , 2018, Accounts of chemical research.

[4]  G. Montelione,et al.  Minimal Heterochiral de Novo Designed 4Fe-4S Binding Peptide Capable of Robust Electron Transfer. , 2018, Journal of the American Chemical Society.

[5]  L. Scott,et al.  Paradigm Shift for Radical S-Adenosyl-l-methionine Reactions: The Organometallic Intermediate Ω Is Central to Catalysis , 2018, Journal of the American Chemical Society.

[6]  A. Byer,et al.  Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme , 2017, Journal of the American Chemical Society.

[7]  J. Szostak,et al.  UV-light-driven prebiotic synthesis of iron-sulfur clusters. , 2017, Nature chemistry.

[8]  A. Byer,et al.  Electron Spin Relaxation and Biochemical Characterization of the Hydrogenase Maturase HydF: Insights into [2Fe-2S] and [4Fe-4S] Cluster Communication and Hydrogenase Activation , 2017, Biochemistry.

[9]  M. Assfalg,et al.  Duplications of an iron-sulphur tripeptide leads to the formation of a protoferredoxin. , 2016, Chemical communications.

[10]  J. W. Peters,et al.  A Redox Active [2Fe-2S] Cluster on the Hydrogenase Maturase HydF. , 2016, Biochemistry.

[11]  B. Hoffman,et al.  Radical SAM catalysis via an organometallic intermediate with an Fe–[5′-C]-deoxyadenosyl bond , 2016, Science.

[12]  S. Khare,et al.  Structural principles for computational and de novo design of 4Fe-4S metalloproteins. , 2016, Biochimica et biophysica acta.

[13]  A. Byer,et al.  Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdo• "Free Radical" Is Never Free. , 2015, Journal of the American Chemical Society.

[14]  J. Broderick,et al.  Radical S-Adenosylmethionine Enzymes , 2014, Chemical reviews.

[15]  Michael A. Hicks,et al.  The Structure–Function Linkage Database , 2013, Nucleic Acids Res..

[16]  G. Clore,et al.  Sequence‐specific determination of protein and peptide concentrations by absorbance at 205 nm , 2013, Protein science : a publication of the Protein Society.

[17]  Fei Xu,et al.  Empirical and computational design of iron-sulfur cluster proteins. , 2012, Biochimica et biophysica acta.

[18]  W. Qi,et al.  Glutathione complexed Fe-S centers. , 2012, Journal of the American Chemical Society.

[19]  Vassilios Ioannidis,et al.  ExPASy: SIB bioinformatics resource portal , 2012, Nucleic Acids Res..

[20]  David A. Case,et al.  Energetic Selection of Topology in Ferredoxins , 2012, PLoS Comput. Biol..

[21]  K. Hodgson,et al.  S K-edge XAS and DFT calculations on SAM dependent pyruvate formate-lyase activating enzyme: nature of interaction between the Fe4S4 cluster and SAM and its role in reactivity. , 2011, Journal of the American Chemical Society.

[22]  W. Lubitz,et al.  [Fe₄S₄]- and [Fe₃S₄]-cluster formation in synthetic peptides. , 2011, Biochimica et biophysica acta.

[23]  C. Drennan,et al.  Structural insights into radical generation by the radical SAM superfamily. , 2011, Chemical reviews.

[24]  Vikas Nanda,et al.  De novo design of a non-natural fold for an iron-sulfur protein: alpha-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. , 2010, Biochimica et biophysica acta.

[25]  P. Amara,et al.  Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins , 2009, Proceedings of the National Academy of Sciences.

[26]  J. Broderick,et al.  Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme , 2008, Proceedings of the National Academy of Sciences.

[27]  P. Frey,et al.  Binding energy in the one-electron reductive cleavage of S-adenosylmethionine in lysine 2,3-aminomutase, a radical SAM enzyme. , 2007, Biochemistry.

[28]  G. Luther,et al.  Chemistry of iron sulfides. , 2007, Chemical reviews.

[29]  P. Frey,et al.  Cofactor dependence of reduction potentials for [4Fe-4S]2+/1+ in lysine 2,3-aminomutase. , 2006, Biochemistry.

[30]  George W. Luther,et al.  Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment , 2005 .

[31]  B. Hoffman,et al.  Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the "radical-Sam" protein superfamily. , 2005, Inorganic chemistry.

[32]  J. Jarrett,et al.  Crystal Structure of Biotin Synthase, an S-Adenosylmethionine-Dependent Radical Enzyme , 2004, Science.

[33]  B. Hoffman,et al.  An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. , 2002, Journal of the American Chemical Society.

[34]  M. L. Kennedy,et al.  Proton coupling to [4Fe-4S](2+/+) and [4Fe-4Se](2+/+) oxidation and reduction in a designed protein. , 2002, Journal of the American Chemical Society.

[35]  B. Hoffman,et al.  Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S](+) cluster of pyruvate formate-lyase activating enzyme. , 2002, Journal of the American Chemical Society.

[36]  C. Krebs,et al.  Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study. , 2002, Journal of the American Chemical Society.

[37]  N. Ugulava,et al.  Biotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions. , 2001, Biochemistry.

[38]  J. Broderick,et al.  Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role , 2001, JBIC Journal of Biological Inorganic Chemistry.

[39]  Jorge F. Reyes-Spindola,et al.  Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. , 2001, Nucleic acids research.

[40]  C. Krebs,et al.  Conversion of 3Fe-4S to 4Fe-4S Clusters in Native Pyruvate Formate-Lyase Activating Enzyme: Mössbauer Characterization and Implications for Mechanism , 2000 .

[41]  J. Broderick,et al.  The [4Fe-4S]1+ Cluster of Pyruvate Formate-Lyase Activating Enzyme Generates the Glycyl Radical on Pyruvate Formate-Lyase: EPR-Detected Single Turnover , 2000 .

[42]  A. Kopf,et al.  Pyruvate formate-lyase-activating enzyme: strictly anaerobic isolation yields active enzyme containing a [3Fe-4S](+) cluster. , 2000, Biochemical and biophysical research communications.

[43]  F. Rabanal,et al.  Determination of nonligand amino acids critical to [4Fe-4S]2+/+ assembly in ferredoxin maquettes. , 1999, Biochemistry.

[44]  F. Rabanal,et al.  Characterization of the Fundamental Protein Ligand Requirements of [4Fe-4S]2+/+ Clusters with Sixteen Amino Acid Maquettes , 1998 .

[45]  E. Duin,et al.  [2Fe-2S] to [4Fe-4S] cluster conversion in Escherichia coli biotin synthase. , 1997, Biochemistry.

[46]  J. Broderick,et al.  Pyruvate Formate-Lyase Activating Enzyme Is an Iron-Sulfur Protein , 1997 .

[47]  H W Hellinga,et al.  The rational design and construction of a cuboidal iron-sulfur protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  F. Rabanal,et al.  Ferredoxin and ferredoxin-heme maquettes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Adams,et al.  Spectroscopic characterization of the novel iron-sulfur cluster in Pyrococcus furiosus ferredoxin. , 1990, The Journal of biological chemistry.

[50]  M. Adams,et al.  Magnetic circular dichroism and electron paramagnetic resonance studies of hydrogenases I and II from Clostridium pasteurianum. , 1989, The Journal of biological chemistry.

[51]  B. Howes,et al.  Observation of S = 2 EPR signals from ferrous iron-thiolate complexes. Relevance to rubredoxin-type sites in proteins , 1989 .

[52]  M. Werth,et al.  Assembly of [FenSn(SR)4]2− (n=2, 4) in aqueous media from iron salts, thiols, and sulfur, sulfide, or thiosulfate plus rhodanese , 1985 .

[53]  W. Orme-Johnson,et al.  Mössbauer, EPR, and magnetization studies of the Azotobacter vinelandii Fe protein. Evidence for a [4Fe-4S]1+ cluster with spin S = 3/2. , 1985, The Journal of biological chemistry.

[54]  H. Beinert,et al.  Mössbauer studies of aconitase. Substrate and inhibitor binding, reaction intermediates, and hyperfine interactions of reduced 3Fe and 4Fe clusters. , 1985, The Journal of biological chemistry.

[55]  H. Beinert,et al.  Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitase. , 1984, The Journal of biological chemistry.

[56]  W. Stevens,et al.  Assembly of [FenSn(SPh)4]2- (n = 2, 4) in aqueous-based media , 1984 .

[57]  K. Hagen,et al.  Synthetic routes to iron sulfide (Fe2S2, Fe3S4, Fe4S4, and Fe6S9), clusters from the common precursor tetrakis(ethanethiolate)ferrate(2-) ion ([Fe(SC2H5)4]2-): structures and properties of [Fe3S4(SR)4]3- and bis(ethanethiolate)nonathioxohexaferrate(4-) ion ([Fe6S9(SC2H5)2]4-), examples of the newest , 1983 .

[58]  D. Hall,et al.  Electron spin relaxation of iron-sulphur proteins studied by microwave power saturation. , 1978, Biochimica et biophysica acta.

[59]  J. Renaud,et al.  Synthetic analogues of the active sites of iron-sulfur proteins. 15. Comparative polarographic potentials of the [Fe4S4(SR)4]2 -- ,3 -- and clostridium pasteurianum ferredoxin redox couples. , 1977, Journal of the American Chemical Society.

[60]  T. Vänngård,et al.  EPR signal intensity and powder shapes: A reexamination , 1975 .

[61]  L. Que,et al.  Synthetic analogs of the active sites of iron-sulfur proteins. IX. Formation and some electronic and reactivity properties of Fe4S4 Glycyl-L-cysteinylglycyl oligopeptide complexes obtained by ligand substitution reactions. , 1974, Journal of the American Chemical Society.

[62]  L. Que,et al.  Synthetic analogs of the active sites of iron-sulfur proteins. VI. Spectral and redox characteristics of the tetranuclear clusters (Fe4S4(SR)4).2-. , 1974, Journal of the American Chemical Society.

[63]  A. Goldfarb,et al.  The ultraviolet absorption spectra of proteins. , 1951, The Journal of biological chemistry.

[64]  Gemma L. Holliday,et al.  Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a “Plug & Play” Domain , 2019 .

[65]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[66]  C. Drennan,et al.  AdoMet radical proteins--from structure to evolution--alignment of divergent protein sequences reveals strong secondary structure element conservation. , 2004, Nucleic acids research.

[67]  M. Drew,et al.  Crystal structure and carbon-13 nuclear magnetic resonance spectrum of [NMe4]2[Fe4S4(SCH2CH2OH)4] and electron spin resonance spectrum of [Fe4S4(SCH2CH2OH)4]3– in aqueous solution , 1981 .

[68]  A. Goldfarb,et al.  Ultraviolet absorption spectra of proteins. , 1951, Science.