Antisense ATM gene therapy: a strategy to increase the radiosensitivity of human tumors

[1]  J. Pontén,et al.  Long term culture of normal and neoplastic human glia. , 2009, Acta pathologica et microbiologica Scandinavica.

[2]  E. Gosink,et al.  Ataxia telangiectasia mutated deficiency affects astrocyte growth but not radiosensitivity. , 1999, Cancer research.

[3]  P. Leder,et al.  Loss of atm radiosensitizes multiple p53 null tissues. , 1998, Cancer research.

[4]  Y Taya,et al.  Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. , 1998, Science.

[5]  T. Jacks,et al.  Involvement of p53 and p21 in Cellular Defects and Tumorigenesis in Atm−/− Mice , 1998, Molecular and Cellular Biology.

[6]  E. Stavridi,et al.  ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins , 1998, Nature Genetics.

[7]  J. Morgan,et al.  Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. , 1998, Science.

[8]  C. Deng,et al.  Atm selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways , 1997, Nature Genetics.

[9]  Y. Shiloh,et al.  Fragments of ATM which have dominant-negative or complementing activity , 1997, Molecular and cellular biology.

[10]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[11]  D. Baltimore,et al.  Dual roles of ATM in the cellular response to radiation and in cell growth control. , 1996, Genes & development.

[12]  Francis Collins,et al.  Atm-Deficient Mice: A Paradigm of Ataxia Telangiectasia , 1996, Cell.

[13]  W. Dewey,et al.  Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells. , 1996, Cancer research.

[14]  K. Khanna,et al.  Nature of G1/S cell cycle checkpoint defect in ataxia-telangiectasia. , 1995, Oncogene.

[15]  Samuel Hellman,et al.  Spatial and temporal control of gene therapy using ionizing radiation , 1995, Nature Medicine.

[16]  M. Lovett,et al.  A single ataxia telangiectasia gene with a product similar to PI-3 kinase. , 1995, Science.

[17]  S. Kim,et al.  Selective enhancement by an antiviral agent of the radiation-induced cell killing of human glioma cells transduced with HSV-tk gene. , 1994, Cancer research.

[18]  S. A. Roberts,et al.  Intrinsic radiosensitivity and prediction of patient response to radiotherapy for carcinoma of the cervix. , 1993, British Journal of Cancer.

[19]  E. Jaffee,et al.  Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Vogelstein,et al.  A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia , 1992, Cell.

[21]  M. Kastan,et al.  Wild-type p53 is a cell cycle checkpoint determinant following irradiation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Vogelstein,et al.  Participation of p53 protein in the cellular response to DNA damage. , 1991, Cancer research.

[23]  H. Vinters,et al.  Ataxia‐Telangiectasia: An Interdisciplinary Approach to Pathogenesis , 1991, Medicine.

[24]  R. Painter,et al.  Radiosensitivity in ataxia-telangiectasia: a new explanation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Taylor,et al.  Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity , 1975, Nature.

[26]  Y Taya,et al.  Enhanced phosphorylation of p53 by ATM in response to DNA damage. , 1998, Science.

[27]  S. Kim,et al.  Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. , 1997, Human gene therapy.

[28]  S. A. Roberts,et al.  The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. , 1997, British Journal of Cancer.

[29]  W. Dewey,et al.  p53-dependent G1 arrest and p53-independent apoptosis influence the radiobiologic response of glioblastoma. , 1996, International journal of radiation oncology, biology, physics.

[30]  M. Lavin,et al.  Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. , 1994, International journal of radiation biology.

[31]  P. Okunieff,et al.  Intrinsic radiation sensitivity may not be the major determinant of the poor clinical outcome of glioblastoma multiforme. , 1992, International journal of radiation oncology, biology, physics.

[32]  R. Painter,et al.  Radioresistant DNA synthesis and human genetic diseases. , 1989, Human genetics.

[33]  G. Steel,et al.  Recovery from radiation damage in human squamous carcinoma of the cervix. , 1989, International journal of radiation biology.

[34]  E. Harlow,et al.  Antibodies: A Laboratory Manual , 1988 .