Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters

β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS) assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid formation using an indicator dye. To choose the most efficient approach for screening, we assessed these assays with different statistical methods—namely, the classical Z’-factor, standardized mean difference (SSMD), the Kolmogorov-Smirnov-test, and t-statistics. This revealed that all three assays are suitable for HTS, the pH assay performing best. Based on our data we discuss the explanatory power of different statistical measures. Finally, we successfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate screening.

[1]  L. Norskov,et al.  A serine protease triad forms the catalytic centre of a triacylglycerol lipase , 1990, Nature.

[2]  F. Arnold,et al.  Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. , 1996, Protein engineering.

[3]  D W Rice,et al.  Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis. , 1993, Journal of molecular biology.

[4]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[5]  Knox Van Dyke,et al.  Luminescence biotechnology : instruments and applications , 2001 .

[6]  Jürgen Pleiss,et al.  Solvent‐induced lid opening in lipases: A molecular dynamics study , 2010, Protein science : a publication of the Protein Society.

[7]  Manfred T. Reetz,et al.  Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution , 1997 .

[8]  Kevin Jiang Introduction , 2013, Nature Medicine.

[9]  L J Kricka,et al.  Phenols as enhancers of the chemiluminescent horseradish peroxidase-luminol-hydrogen peroxide reaction: application in luminescence-monitored enzyme immunoassays. , 1985, Clinical chemistry.

[10]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[11]  R. W. Marshall,et al.  Determination of sub-nanomole amounts of hydrogen peroxide using an immobilized enzyme flow cell. Application to the determination of ethanol , 1992 .

[12]  D. A. Bosco,et al.  Enzyme Dynamics During Catalysis , 2002, Science.

[13]  Jean-Louis Reymond,et al.  Enzyme assays for high-throughput screening. , 2004, Current opinion in biotechnology.

[14]  U. Bornscheuer,et al.  Directed evolution of an esterase: screening of enzyme libraries based on pH-indicators and a growth assay. , 1999, Bioorganic & medicinal chemistry.

[15]  H. W. Ruelius,et al.  Alcohol oxidase, a flavoprotein from several Basidiomycetes species. Crystallization by fractional precipitation with polyethylene glycol. , 1968, Biochimica et biophysica acta.

[16]  Thorsten Strufe,et al.  StreAM-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_g$$\end{document}Tg: algorithms for analyzing coarse grained , 2017, Algorithms for Molecular Biology.

[17]  Brian J Eastwood,et al.  A Comparison of Assay Performance Measures in Screening Assays: Signal Window, Z' Factor, and Assay Variability Ratio , 2006, Journal of biomolecular screening.

[18]  Amy S. Espeseth,et al.  Genome-scale RNAi screen for host factors required for HIV replication. , 2008, Cell host & microbe.

[19]  M. Palcic,et al.  A high-throughput pH indicator assay for screening glycosyltransferase saturation mutagenesis libraries. , 2008, Analytical biochemistry.

[20]  Uwe T Bornscheuer,et al.  High-throughput assays for lipases and esterases. , 2005, Biomolecular engineering.

[21]  R. Raines,et al.  Trimethyl Lock: A Stable Chromogenic Substrate for Esterases , 2008, Molecules.

[22]  C. Syldatk,et al.  Transaminases for the synthesis of enantiopure beta-amino acids , 2012, AMB Express.

[23]  B. Hartley,et al.  The reaction of p-nitrophenyl esters with chymotrypsin and insulin. , 1954, The Biochemical journal.

[24]  F. Fülöp,et al.  An efficient new enzymatic method for the preparation of β-aryl-β-amino acid enantiomers , 2008 .

[25]  T. Takeuchi,et al.  New antibiotics, bleomycin A and B. , 1966, The Journal of antibiotics.

[26]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[27]  B Rubin,et al.  Insights into interfacial activation from an open structure of Candida rugosa lipase. , 1994, The Journal of biological chemistry.

[28]  M. Reetz,et al.  Infrared-thermographic screening of the activity and enantioselectivity of enzymes , 2001, Applied Microbiology and Biotechnology.

[29]  Douglas S. Clark,et al.  Esterase activity of bovine serum albumin up to 160 °C: A new benchmark for biocatalysis , 2008 .

[30]  Xiaohua Douglas Zhang A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays. , 2007, Genomics.

[31]  T. Eguchi,et al.  Biosynthesis of natural products containing β-amino acids. , 2014, Natural product reports.

[32]  A. Tsuji,et al.  Chemiluminescence enzyme immunoassay of dehydroepiandrosterone and its sulfate using peroxidase as label , 1981, Steroids.

[33]  Pierre Legendre,et al.  Statistical comparison of univariate tests of homogeneity of variances , 2001 .

[34]  Xuming Zhang,et al.  A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs , 2014, Antiviral Research.

[35]  C. Mao,et al.  Evaluation of a Luciferase-Based Reporter Assay as a Screen for Inhibitors of Estrogen-ERα-Induced Proliferation of Breast Cancer Cells , 2012, Journal of biomolecular screening.

[36]  Ning Li,et al.  Thermomyces lanuginosus lipase-catalyzed regioselective acylation of nucleosides: Enzyme substrate recognition. , 2009, Journal of biotechnology.

[37]  R. Kazlauskas,et al.  QUANTITATIVE SCREENING OF HYDROLASE LIBRARIES USING PH INDICATORS: IDENTIFYING ACTIVE AND ENANTIOSELECTIVE HYDROLASES , 1998 .

[38]  R. Donehower,et al.  Taxol: a novel investigational antimicrotubule agent. , 1990, Journal of the National Cancer Institute.

[39]  A. Main,et al.  The determination of human-serum-cholinesterase activity with o-nitrophenyl butyrate. , 1961, The Biochemical journal.

[40]  Xiaohua Douglas Zhang,et al.  Novel Analytic Criteria and Effective Plate Designs for Quality Control in Genome-Scale RNAi Screens , 2008, Journal of biomolecular screening.

[41]  Jürgen Hubbuch,et al.  Application of an aqueous two‐phase systems high‐throughput screening method to evaluate mAb HCP separation , 2011, Biotechnology and bioengineering.

[42]  R. Verger,et al.  Methods for lipase detection and assay: a critical review , 2000 .

[43]  Ana M Azevedo,et al.  Ethanol biosensors based on alcohol oxidase. , 2005, Biosensors & bioelectronics.

[44]  A. Pütz Isolierung, Identifizierung und biochemische Charakterisierung Dialkylphthalat spaltender Esterasen , 2007 .

[45]  A. Tanaka,et al.  YM-170320, a novel lipopeptide antibiotic inducing morphological change of colonies in a mutant of Candida tropicalis pK233. , 1998, The Journal of antibiotics.

[46]  A. Hermetter,et al.  Identification of various lipolytic enzymes in crude porcine pancreatic lipase preparations using covalent fluorescent inhibitors , 2004, Biotechnology and bioengineering.

[47]  D Rodbard,et al.  Statistical quality control and routine data processing for radioimmunoassays and immunoradiometric assays. , 1974, Clinical chemistry.

[48]  C. Schmidt-Dannert,et al.  Directed evolution of industrial enzymes. , 1999, Trends in biotechnology.

[49]  H. Schlegel,et al.  NADH-Dependent coupled enzyme assay for urease and other ammonia-producing systems. , 1966, Analytical biochemistry.

[50]  R. Pratt,et al.  A direct spectrophotometric assay for D-alanine carboxypeptidases and for the esterase activity of beta-lactamases. , 1985, Analytical biochemistry.

[51]  I. Tuñón,et al.  Are there dynamical effects in enzyme catalysis? Some thoughts concerning the enzymatic chemical step , 2015, Archives of biochemistry and biophysics.

[52]  J. Aikens,et al.  Visualization of enzyme-catalyzed reactions using pH indicators: rapid screening of hydrolase libraries and estimation of the enantioselectivity. , 1999, Bioorganic & medicinal chemistry.

[53]  D. Yi,et al.  Flexibility of Substrate Binding of Cytosine‐5′‐Monophosphate‐N‐Acetylneuraminate Synthetase (CMP‐Sialate Synthetase) from Neisseria meningitidis: An Enabling Catalyst for the Synthesis of Neo‐sialoconjugates , 2011 .

[54]  Romas J. Kazlauskas,et al.  Quantitative Assay of Hydrolases for Activity and Selectivity Using Color Changes , 2008 .

[55]  L. Kay,et al.  Intrinsic dynamics of an enzyme underlies catalysis , 2005, Nature.

[56]  H. Okuyama,et al.  Studies on lipase from Mucor javanicus. I. Purification and properties. , 1975, Biochimica et biophysica acta.

[57]  H. O. Beutler,et al.  Neue Methode zur enzymatischen Bestimmung von Äthanol in Lebensmitteln , 1977 .

[58]  F. Menger,et al.  Origin of rate accelerations in an enzyme model: the p-nitrophenyl ester syndrome , 1987 .

[59]  M. N. Gupta,et al.  Purification and properties of the alkaline lipase from Burkholderia cepacia A.T.C.C. 25609 , 2008, Biotechnology and applied biochemistry.

[60]  Karina de Godoy Daiha,et al.  Are Lipases Still Important Biocatalysts? A Study of Scientific Publications and Patents for Technological Forecasting , 2015, PloS one.

[61]  Biotransformations in organic synthesis , 2000 .

[62]  Mei Fang Liu,et al.  Recent advances in the stereoselective synthesis of β-amino acids , 2002 .

[63]  B. Feringa,et al.  Recent advances in the catalytic asymmetric synthesis of β-amino acids , 2010 .

[64]  L. Kanerva,et al.  Biocatalysis as a Profound Tool in the Preparation of Highly Enantiopure β-Amino Acids , 2006 .

[65]  Hein J. Wijma,et al.  Biochemical Properties and Crystal Structure of a β-Phenylalanine Aminotransferase from Variovorax paradoxus , 2012, Applied and Environmental Microbiology.

[66]  Uwe T. Bornscheuer,et al.  High‐Throughput‐Screening Systems for Hydrolases , 2004 .

[67]  H. Atomi,et al.  Extremely Stable and Versatile Carboxylesterase from a Hyperthermophilic Archaeon , 2002, Applied and Environmental Microbiology.

[68]  Christopher P Austin,et al.  High-throughput screening assays for the identification of chemical probes. , 2007, Nature chemical biology.

[69]  P E Brodelius Enzyme assays. , 1991, Current opinion in biotechnology.

[70]  Frances H. Arnold,et al.  Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents , 1996, Nature Biotechnology.

[71]  D. Demirjian,et al.  Screening for Novel Enzymes , 1999 .

[72]  S. Petersen,et al.  The thermal stability of the Fusarium solani pisi cutinase as a function of pH , 2001, Journal of biomedicine & biotechnology.

[73]  J. Baratti,et al.  Oxidation of Methanol by the Yeast, Pichia pastoris. Purification and Properties of the Alcohol Oxidase , 1980 .

[74]  J. F. Nixon,et al.  Topics in current chemistry , 1982 .

[75]  K. Hirano,et al.  Purification, crystallization and properties of triacylglycerol lipase from Pseudomonas fluorescens. , 1977, Biochimica et biophysica acta.