Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.

The distance dependence of localized surface plasmon (LSP) coupled Förster resonance energy transfer (FRET) is experimentally and theoretically investigated using a trilayer structure composed of separated monolayers of donor and acceptor quantum dots with an intermediate Au nanoparticle layer. The dependence of the energy transfer efficiency, rate, and characteristic distance, as well as the enhancement of the acceptor emission, on the separations between the three constituent layers is examined. A d(-4) dependence of the energy transfer rate is observed for LSP-coupled FRET between the donor and acceptor planes with the increased energy transfer range described by an enhanced Förster radius. The conventional FRET rate also follows a d(-4) dependence in this geometry. The conditions under which this distance dependence is valid for LSP-coupled FRET are theoretically investigated. The influence of the placement of the intermediate Au NP is investigated, and it is shown that donor-plasmon coupling has a greater influence on the characteristic energy transfer range in this LSP-coupled FRET system. The LSP-enhanced Förster radius is dependent on the Au nanoparticle concentration. The potential to tune the characteristic energy transfer distance has implications for applications in nanophotonic devices or sensors.

[1]  A. Eychmüller,et al.  Colloidal semiconductor nanocrystals: the aqueous approach. , 2013, Chemical Society reviews.

[2]  Nicholas A. Kotov,et al.  Layer-by-Layer Assembled Films of HgTe Nanocrystals with Strong Infrared Emission , 2000 .

[3]  N O Reich,et al.  Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. , 2005, Journal of the American Chemical Society.

[4]  D. Reinhoudt,et al.  Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.

[5]  Chien-Cheng Chang,et al.  Particle plasmons of metal nanospheres: application of multiple scattering approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Jinkyu Lee,et al.  Switching off FRET in the hybrid assemblies of diblock copolymer micelles, quantum dots, and dyes by plasmonic nanoparticles. , 2012, ACS nano.

[7]  L. Manna,et al.  Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control , 2006, Nature nanotechnology.

[8]  Nicholas A. Kotov,et al.  Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles , 2007 .

[9]  Abraham Nitzan,et al.  Theory of energy transfer between molecules near solid state particles , 1985 .

[10]  A. L. Bradley,et al.  Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots , 2006 .

[11]  F. Caruso,et al.  Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. , 2001, Angewandte Chemie.

[12]  A. L. Bradley,et al.  Effect of Metal Nanoparticle Concentration on Localized Surface Plasmon Mediated Förster Resonant Energy Transfer , 2012 .

[13]  Mathieu L. Viger,et al.  Plasmon-Enhanced Resonance Energy Transfer from a Conjugated Polymer to Fluorescent Multilayer Core—Shell Nanoparticles: A Photophysical Study , 2011 .

[14]  Baojun Li,et al.  Surface plasmon enhanced energy transfer in metal-semiconductor hybrid nanostructures. , 2011, Nanoscale.

[15]  A. Kasprzak The use of FRET in the analysis of motor protein structure. , 2007, Methods in molecular biology.

[16]  Thomas A. Klar,et al.  Aqueous synthesis of thiol-capped CdTe nanocrystals : State-of-the-art , 2007 .

[17]  Tian Ming,et al.  Plasmon-Controlled Förster Resonance Energy Transfer , 2012 .

[18]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[19]  D. Mackowski,et al.  Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[20]  D. Lilley,et al.  The structure of cyanine 5 terminally attached to double-stranded DNA: implications for FRET studies. , 2008, Biochemistry.

[21]  Seyed M. Sadeghi,et al.  Enhancement of Energy Transfer between Quantum Dots: The Impact of Metallic Nanoparticle Sizes , 2012 .

[22]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[23]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres. , 1995, Applied optics.

[24]  A. Nitzan,et al.  Accelerated energy transfer between molecules near a solid particle , 1984 .

[25]  A. Lutich,et al.  Accelerating fluorescence resonance energy transfer with plasmonic nanoresonators , 2011 .

[26]  Vladimir Lesnyak,et al.  Concentration dependence of Forster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: Effect of donor-donor interactions , 2011 .

[27]  M. Singh,et al.  Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. , 2006, Journal of the American Chemical Society.

[28]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[29]  Yang-Hsiang Chan,et al.  Using Patterned Arrays of Metal Nanoparticles to Probe Plasmon Enhanced Luminescence of CdSe Quantum Dots. , 2009, ACS nano.

[30]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[31]  A. L. Bradley,et al.  Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots , 2008 .

[32]  R. Ruppin,et al.  Decay of an excited molecule near a small metal sphere , 1982 .

[33]  Denis Boudreau,et al.  FRET enhancement in multilayer core-shell nanoparticles. , 2009, Nano letters.

[34]  M. Nakayama,et al.  Experimental verification of Förster energy transfer between semiconductor quantum dots , 2008 .

[35]  Pi-Tai Chou,et al.  Surface plasmon enhanced energy transfer between type I CdSe/ZnS and type II CdSe/ZnTe quantum dots , 2010 .

[36]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Intermolecular energy transfer in the presence of dispersing and absorbing media , 2001, quant-ph/0107150.

[38]  A. Alivisatos,et al.  Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. , 2008, Journal of the American Chemical Society.

[39]  Wei Zhang,et al.  Multipole-plasmon-enhanced förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects , 2010 .

[40]  Vladimir Lesnyak,et al.  Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers. , 2011, Nano letters.

[41]  Igor L. Medintz,et al.  On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. , 2007, Nano letters.

[42]  J. Lakowicz,et al.  Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[43]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[44]  A. L. Bradley,et al.  Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. , 2012, ACS nano.

[45]  Hilmi Volkan Demir,et al.  Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. , 2013, Nano letters.

[46]  H. Demir,et al.  Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. , 2011, ACS nano.

[47]  M. Meneghetti,et al.  Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy , 2009 .

[48]  A. L. Bradley,et al.  Förster resonant energy transfer in quantum dot layers , 2010 .