10-Gb/s 0.13- $\mu{\rm m}$ CMOS Inductorless Modified-RGC Transimpedance Amplifier

This paper presents an inductorless 0.13- μm CMOS TIA structure that is a modified version of a regulated cascode (RGC) TIA. An immittance converter is incorporated to reduce power consumption while increasing transimpedance gain. Measured 3-dB bandwidth is 7 GHz, sufficient for 10-Gb/s operation, in the presence of 250 fF capacitance at the TIA input, representative of typical CMOS photodiode capacitance. The transimpedance gain of the single-stage TIA is 50 dBΩ, and the group-delay variation is less than ±19 ps over the 3-dB bandwidth. The circuit occupies an active area of 180 μm×90 μm and consumes 7 mW from a 1.5-V supply. The measured average input-referred current noise of the TIA is 31 pA/√{Hz}. Simulations and analysis show that the proposed single-stage TIA architecture is capable of achieving improvement in the transimpedance limit over a single-stage RGC TIA designed for the same data rate and the same input photodiode capacitance. A comparison of measurement results to published TIAs also demonstrates the competitive performance of the proposed TIA in terms of the TIA transimpendance gain, bandwidth, area, and power consumption.

[1]  Eduard Säckinger,et al.  On the Noise Optimum of FET Broadband Transimpedance Amplifiers , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Deog-Kyoon Jeong,et al.  Circuit techniques for a 40Gb/s transmitter in 0.13/spl mu/m CMOS , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[3]  Liang-Hung Lu,et al.  A Transimpedance Amplifier With a Tunable Bandwidth in 0.18-$\mu{\hbox{m}}$ CMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.

[4]  Chih-Chang Lin,et al.  8.4 A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[5]  Jri Lee A 20-Gb/s Adaptive Equalizer in 0.13-$muhbox m$CMOS Technology , 2006, IEEE Journal of Solid-State Circuits.

[6]  Cheng Li,et al.  A Low-Power 26-GHz Transformer-Based Regulated Cascode SiGe BiCMOS Transimpedance Amplifier , 2013, IEEE Journal of Solid-State Circuits.

[7]  Kiat Seng Yeo,et al.  Design of a CMOS Broadband Transimpedance Amplifier With Active Feedback , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Sorin P. Voinigescu,et al.  Erratum: 6-kΩ 43-Gb/s differential transimpedance-limiting amplifier with auto-zero feedback and high dynamic range (IEEE Journal Solid-State Circuits (Oct. 2004) 39 (1680-1689)) , 2004 .

[9]  K. Ogawa Noise caused by GaAs mesfets in optical receivers , 1981, The Bell System Technical Journal.

[10]  Chao-Hsin Lu,et al.  Design and anaylsis of a 2.5-Gbps optical receiver analog front-end in a 0.35-/spl mu/m digital CMOS technology , 2006 .

[11]  Eduard Säckinger Broadband Circuits for Optical Fiber Communication: Säckinger/Broadband , 2005 .

[12]  Jun-De Jin,et al.  A 40-Gb/s Transimpedance Amplifier in 0.18-$\mu$m CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[13]  Jun-De Jin,et al.  A 75-dB � 10Gb / s Transimpedance Amplifier in 0 . 18-� m CMOS Technology , 2008 .

[14]  Reza Abdolvand,et al.  A 76 dB$\Omega $ 1.7 GHz 0.18 $\mu$ m CMOS Tunable TIA Using Broadband Current Pre-Amplifier for High Frequency Lateral MEMS Oscillators , 2011, IEEE Journal of Solid-State Circuits.

[15]  Jri Lee,et al.  4×25 Gb/s Transceiver With Optical Front-end for 100 GbE System in 65 nm CMOS Technology , 2015, IEEE Journal of Solid-State Circuits.

[16]  Sorin P. Voinigescu,et al.  Correction to “6-k $Omega$ 43-Gb/s Differential Transimpedance-Limiting Amplifier With Auto-Zero Feedback and High Dynamic Range” , 2004 .

[17]  Sung Min Park,et al.  1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications , 2004, IEEE Journal of Solid-State Circuits.

[18]  E. Sackinger,et al.  Broadband Circuits for Optical Fiber Communication , 2005 .

[19]  E. Sackinger The Transimpedance Limit , 2010 .

[20]  Kiat Seng Yeo,et al.  Cross-Coupled Current Conveyor Based CMOS Transimpedance Amplifier for Broadband Data Transmission , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[21]  Joohwa Kim,et al.  Staggered Gain for 100+ GHz Broadband Amplifiers , 2011, IEEE Journal of Solid-State Circuits.

[22]  A. Hajimiri,et al.  Bandwidth enhancement for transimpedance amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[23]  S.P. Voinigescu,et al.  6-k/spl Omega/, 43-Gb/s differential transimpedance-limiting amplifier with auto-zero feedback and high dynamic range , 2003, 25th Annual Technical Digest 2003. IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003..

[24]  Wei-Zen Chen,et al.  Design and anaylsis of a 2.5-Gbps optical receiver analog front-end in a 0.35-μm digital CMOS technology , 2006, IEEE Trans. Circuits Syst. I Regul. Pap..

[25]  L. Belostotski,et al.  A CMOS Low-Power Cross-Coupled Immittance-Converter Transimpedance Amplifier , 2015, IEEE Microwave and Wireless Components Letters.

[26]  M. H. Taghavi,et al.  On the use of multi-path inductorless TIAs for larger transimpedance limit , 2013 .

[27]  Jeffrey S. Walling,et al.  Wideband CMOS Amplifier Design: Time-Domain Considerations , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Horst Zimmermann,et al.  Low-power 10 Gb/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40 nm CMOS , 2013 .

[29]  Shen-Iuan Liu,et al.  40 Gb/s Transimpedance-AGC Amplifier and CDR Circuit for Broadband Data Receivers in 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[30]  A. Madanayake,et al.  Wideband LNA With an Active -C Element , 2012, IEEE Microwave and Wireless Components Letters.

[31]  S. Pavan,et al.  A 46-GHz distributed transimpedance amplifier using SiGe bipolar technology , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[32]  Eui-Suk Jung,et al.  Bandwidth enhancement technique for CMOS RGC transimpedance amplifier , 2014 .

[33]  Michael Frueh,et al.  Design Of Integrated Circuits For Optical Communications , 2016 .