Estimation of View Transformations in Images

Computer vision process frequently include an modeling step whose parameters, obtained from a data set, are not easy to calculate due mainly to the presence of a high proportion of outliers. The most known method to overcome this problem is the random sampling consensus (RANSAC). Such technique, in combination with Harmony Search (HS), are used in this chapter for a robust estimation of multiple view relations from point correspondences in digital images. By using this evolutionary technique, the estimation method endorse a different sampling strategy to generate putative solutions: on one hand, RANSAC generate new candidate solutions in a random fashion; on the other hand, by using HS in combination with RANSAC, each new candidate solution is generated by considering the quality of previous candidate solutions. In other words, the solutions space is searched in an intelligent manner. The HS algorithm is inspired by the improvisation process of an orchestra that takes place when musicians search for a better state of harmony; as a result, the HS-RANSAC can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is used in this chapter to solve the estimation of homographies, with an engineering application to solve the problem of position estimation in a humanoid robot. In this chapter, seven techniques are compared for the problem of robust homography estimation.

[1]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[2]  David Suter,et al.  Robust adaptive-scale parametric model estimation for computer vision , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[4]  Richard Szeliski,et al.  Creating full view panoramic image mosaics and texture-mapped models , 1997, International Conference on Computer Graphics and Interactive Techniques.

[5]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[6]  K. Lee,et al.  The harmony search heuristic algorithm for discrete structural optimization , 2005 .

[7]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[8]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[9]  Stuart B. Heinrich Efficient and robust model fitting with unknown noise scale , 2013, Image Vis. Comput..

[10]  Gonzalo López-Nicolás,et al.  Visual control of vehicles using two-view geometry , 2010 .

[11]  Erik Valdemar Cuevas Jiménez,et al.  Circle Detection by Harmony Search Optimization , 2012, J. Intell. Robotic Syst..

[12]  Zong Woo Geem,et al.  Determination of viscoelastic and damage properties of hot mix asphalt concrete using a harmony search algorithm , 2009 .

[13]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[14]  Jiri Matas,et al.  Randomized RANSAC with Td, d test , 2004, Image Vis. Comput..

[15]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[16]  Masoud Shariat Panahi,et al.  An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration-exploitation balance , 2013, Swarm Evol. Comput..

[17]  Junping Zhang,et al.  Super-resolution of human face image using canonical correlation analysis , 2010, Pattern Recognit..

[18]  Shaogang Gong,et al.  Hallucinating multiple occluded face images of different resolutions , 2006, Pattern Recognit. Lett..

[19]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[20]  Gonzalo Pajares,et al.  Multilevel Thresholding Segmentation Based on Harmony Search Optimization , 2013, J. Appl. Math..

[21]  Fuqiang Zhou,et al.  Accurate and robust estimation of camera parameters using RANSAC , 2013 .

[22]  Carlos Hitoshi Morimoto,et al.  Multiple camera people detection and tracking using support integration , 2011, Pattern Recognit. Lett..

[23]  Qiushi Zhao,et al.  A SIFT-based contactless palmprint verification approach using iterative RANSAC and local palmprint descriptors , 2014, Pattern Recognit..

[24]  Josechu J. Guerrero,et al.  Visual correction for mobile robot homing , 2005, Robotics Auton. Syst..

[25]  Jing J. Liang,et al.  A self-adaptive global best harmony search algorithm for continuous optimization problems , 2010, Appl. Math. Comput..

[26]  Jing J. Liang,et al.  A local-best harmony search algorithm with dynamic sub-harmony memories for lot-streaming flow shop scheduling problem , 2011, Expert Syst. Appl..

[27]  Ronald Chung,et al.  Homography-based partitioning of curved surface for stereo correspondence establishment , 2007, Pattern Recognit. Lett..

[28]  Günther Schmidt,et al.  Intelligent gaze control for vision-guided humanoid walking: methodological aspects , 2004, Robotics Auton. Syst..

[29]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[30]  Ronald Chung,et al.  Image mosaicking for polyhedral scene and in particular singly visible surfaces , 2008, Pattern Recognit..

[31]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[32]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[33]  Kamal Jamshidi,et al.  Biologically inspired layered learning in humanoid robots , 2014, Knowl. Based Syst..

[34]  Carlos Sagüés,et al.  Distributed multi-camera visual mapping using topological maps of planar regions , 2011, Pattern Recognit..

[35]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[36]  Quan-Ke Pan,et al.  Harmony search algorithm with dynamic control parameters , 2012, Appl. Math. Comput..

[37]  H. Beyer Evolutionary algorithms in noisy environments : theoretical issues and guidelines for practice , 2000 .

[38]  Z. Geem Optimal Design of Water Distribution Networks Using Harmony Search , 2009 .

[39]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[40]  Zong Woo Geem,et al.  Application of Harmony Search to Vehicle Routing , 2005 .

[41]  Muhittin Gökmen,et al.  Super-resolution reconstruction of faces by enhanced global models of shape and texture , 2012, Pattern Recognit..

[42]  Zong Woo Geem,et al.  Determination of individual sound power levels of noise sources using a harmony search algorithm , 2009 .

[43]  Richard Szeliski,et al.  Creating full view panoramic image mosaics and environment maps , 1997, SIGGRAPH.

[44]  Renato A. Krohling,et al.  Swarm algorithms with chaotic jumps applied to noisy optimization problems , 2011, Inf. Sci..

[45]  Peter Meer,et al.  Beyond RANSAC: User Independent Robust Regression , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[46]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[47]  Li Ming,et al.  An analysis on convergence and convergence rate estimate of elitist genetic algorithms in noisy environments , 2013 .

[48]  Ling Wang,et al.  Particle swarm optimization for function optimization in noisy environment , 2006, Appl. Math. Comput..

[49]  Rahul Sukthankar,et al.  Fast and accurate global motion compensation , 2011, Pattern Recognit..

[50]  James P. Ostrowski,et al.  Visual motion planning for mobile robots , 2002, IEEE Trans. Robotics Autom..