Nonlinear analysis of EEG for seizure prediction

Epilepsy is one of the most common neurological disorders of the human population. Seizure prediction is an important research area which aims to warn the patient and the epileptologist about an impending seizure so that the necessary preventive steps can be taken well in advance. In this paper an algorithm is developed to predict seizures by using nonlinear features namely entropy and approximate entropy (ApEn). Analysis is carried out on scalp electroencephalogram (EEG) data and the seizure prediction time varies from 5 to 60 minutes. The false detection rate varies from 0.38/hour to 1.00/hour. With all the tested seizures being detected and low false detection rate per hour obtained, this algorithm shows that seizure prediction can be done by using scalp EEG which paves the way for future development of portable and safe seizure prediction systems using scalp EEG as input data.

[1]  S. Huffel,et al.  Anticipation of epileptic seizures from standard EEG recordings , 2003, The Lancet.

[2]  Alvin Shrier,et al.  Nonlinear dynamics, chaos and complex cardiac arrhythmias , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[4]  Stephen M. Myers,et al.  Seizure prediction: Methods , 2011, Epilepsy & Behavior.

[5]  R. Acharya U,et al.  Nonlinear analysis of EEG signals at different mental states , 2004, Biomedical engineering online.

[6]  K. Lehnertz,et al.  Seizure prediction and the preseizure period , 2002, Current opinion in neurology.

[7]  Heikki V Huikuri,et al.  Measurement of heart rate variability by methods based on nonlinear dynamics. , 2003, Journal of electrocardiology.

[8]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Huffel,et al.  Anticipation of epileptic seizures from standard EEG recordings , 2003, The Lancet.

[10]  Roberto Hornero,et al.  Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  GOTTFRIED MAYER‐KRESS AND,et al.  Dimensionality of the Human Electroencephalogram , 1987, Annals of the New York Academy of Sciences.

[12]  Leon D. Iasemidis,et al.  Epileptic seizure prediction and control , 2003, IEEE Transactions on Biomedical Engineering.

[13]  Yusuf Uzzaman Khan,et al.  Seizure prediction using statistical dispersion measures of intracranial EEG , 2014, Biomed. Signal Process. Control..

[14]  L Glass,et al.  Complex dynamics and bifurcations in neurology. , 1989, Journal of theoretical biology.

[15]  K. Abdel-Aziz,et al.  Automatic Epileptic Seizure Detection Using Scalp EEG and Advanced Artificial Intelligence Techniques , 2015, BioMed research international.

[16]  Reza Boostani,et al.  Entropy and complexity measures for EEG signal classification of schizophrenic and control participants , 2009, Artif. Intell. Medicine.

[17]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals , 1995 .

[18]  Karsten Keller,et al.  Efficiently Measuring Complexity on the Basis of Real-World Data , 2013, Entropy.

[19]  Christopher Essex,et al.  Chaotic time series analyses of epileptic seizures , 1990 .

[20]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Mackey,et al.  Temporal Disorder in Human Oscillatory Systems , 1987 .

[22]  Viglione Ss,et al.  Proceedings: Epileptic seizure prediction. , 1975 .

[23]  L. Iasemidis Seizure prediction and its applications. , 2011, Neurosurgery clinics of North America.

[24]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[25]  B. Litt,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Review Prediction of Epileptic Seizures Are Seizures Predictable? Prediction of Epileptic Seizures , 2022 .

[26]  Gregory L. Baker,et al.  Chaotic Dynamics: An Introduction , 1990 .

[27]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[28]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[29]  William J. Williams,et al.  Nonlinear Dynamics of Electrocorticographic Data in Temporal Lobe Epilepsy , 1988 .

[30]  Mario Markus,et al.  From chemical to biological organization , 1988 .

[31]  S S Viglione,et al.  Proceedings: Epileptic seizure prediction. , 1975, Electroencephalography and clinical neurophysiology.

[32]  Ali H. Shoeb,et al.  An algorithm for seizure onset detection using intracranial EEG , 2011, Epilepsy & Behavior.