Prediction of axial capacity of piles driven in non-cohesive soils based on neural networks approach

AbstractThis paper presents an application of two advanced approaches, Artificial Neural Networks (ANN) and Principal Component Analysis (PCA) in predicting the axial pile capacity. The combination of these two approaches allowed the development of an ANN model that provides more accurate axial capacity predictions. The model makes use of Back-Propagation Multi-Layer Perceptron (BPMLP) with Bayesian Regularization (BR), and it is established through the incorporation of approximately 415 data sets obtained from data published in the literature for a wide range of un-cemented soils and pile configurations. The compiled database includes, respectively 247 and 168 loading tests on large- and low-displacement driven piles. The contributions of the soil above and below pile toe to the pile base resistance are pre-evaluated using separate finite element (FE) analyses. The assessment of the predictive performance of the new method against a number of traditional SPT-based approaches indicates that the developed ...

[1]  Dong-Sheng Jeng,et al.  An optimised product-unit neural network with a novel PSO-BP hybrid training algorithm: Applications to load-deformation analysis of axially loaded piles , 2013, Eng. Appl. Artif. Intell..

[2]  M C McVay,et al.  DETERMINATION OF AXIAL PILE CAPACITY OF PRESTRESSED CONCRETE CYLINDER PILES , 2004 .

[3]  R. L. Nordlund,et al.  Bearing Capacity of Piles in Cohesionless Soils , 1963 .

[4]  F. Azizi,et al.  Applied Analyses in Geotechnics , 1999 .

[5]  Harry M. Coyle,et al.  NEW DESIGN CORRELATIONS FOR PILES IN SAND , 1981 .

[6]  Mark B. Jaksa,et al.  Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data , 2014 .

[7]  Mohammad Hassan Baziar,et al.  Prediction of pile settlement based on cone penetration test results: An ANN approach , 2015 .

[8]  国際臨海開発研究センター Technical standards for port and harbour facilities in Japan , 1991 .

[9]  H. G. Poulos,et al.  Pile behaviour — theory and application , 1990 .

[10]  S. Christoulas,et al.  ESSAIS DE CHARGEMENT DE PIEUX BATTUS MOULES SUR LE SITE DE KAMINIA (ATHENES) , 1985 .

[11]  S. Qin,et al.  Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods† , 1999 .

[12]  Rodrigo Salgado,et al.  Behavior of Open- and Closed-Ended Piles Driven into Sands , 2003 .

[13]  J Biarez,et al.  BEARING CAPACITY AND SETTLEMENT OF PILE FOUNDATIONS , 1977 .

[14]  KarrayMourad,et al.  Reply to the discussion by P.K. Robertson on “Influence of particle size on the correlation between shear wave velocity and cone tip resistance”1Appears in the Canadian Geotechnical Journal, 49(1): 121–123 [doi: 10.1139/t11-100]. , 2012 .

[15]  Kenji Ishihara Recent advances in pile testing and diaphragm wall construction in Japan , 2010 .

[16]  Frank Rausche,et al.  DESIGN AND CONSTRUCTION OF DRIVEN PILE FOUNDATIONS - VOLUME I , 1997 .

[17]  M. Randolph,et al.  Design of driven piles in sand , 1994 .

[18]  J. Ng,et al.  Behaviour of jacked and driven piles in sandy soil , 2006 .

[19]  Mohamed A. Shahin,et al.  Load-settlement modelling of axially loaded drilled shafts using CPT-based recurrent neural networks , 2014 .

[20]  Harry G. Poulos,et al.  Pile behaviour - theory and application , 1989 .

[21]  Rodrigo Salgado,et al.  Pile Design Based on Cone Penetration Test Results , 1999 .

[22]  Yves Robert,et al.  A few comments on pile design , 1997 .

[23]  N F Ismael ANALYSIS OF LOAD TESTS ON PILES DRIVEN THROUGH CALCAREOUS DESERT SANDS. TECHNICAL NOTE , 1999 .

[24]  Barry Lehane,et al.  Cone penetration test (CPT) methods for end-bearing assessment of open-and closed-ended driven piles in siliceous sand , 2008 .

[25]  Brendan C. O'Kelly,et al.  The use of in-situ site investigation techniques for the axial design of offshore piles , 2013 .

[26]  John F. MacGregor STATISTICAL PROCESS CONTROL OF MULTIVARIATE PROCESSES , 1994 .

[27]  Mohamed-Faouzi Harkat Détection et localisation de défauts par analyse en composantes principales , 2003 .

[28]  Michael McVay,et al.  Side Shear Setup. II: Results From Florida Test Piles , 2005 .

[29]  BYRON BYRNE,et al.  Driven Pipe Piles in Dense Sand Byron Byrne , 2000 .

[30]  G G Mayerhof,et al.  Bearing Capacity and Settlement of Pile Foundations , 1976 .

[31]  Chung Bang Yun,et al.  Nondestructive Evaluation of Crack Depth in Concrete Using PCA-compressed Wave Transmission Function and Neural Networks , 2008 .

[32]  James A. Schneider,et al.  Analyzing Drivability of Open Ended Piles in Very Dense Sands , 2010 .

[33]  Ali Amini,et al.  PILE LOADING TESTS AT GOLDEN EARS BRIDGE , 2008 .

[34]  Joshua R. Omer,et al.  Large-scale pile tests in Mercia mudstone: Data analysis and evaluation of current design methods , 2003 .

[35]  F. Tavenas,et al.  Load Tests Results on Friction Piles in Sand , 1971 .

[36]  Said Kenai,et al.  Predicting concrete properties using neural networks (NN) with principal component analysis (PCA) technique , 2012 .

[37]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[38]  W. Robert Thompson,et al.  Test Pile Program to Determine Axial Capacity and Pile Setup for the Biloxi Bay Bridge , 2009 .

[39]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[40]  M. A. A. Kiefa GENERAL REGRESSION NEURAL NETWORKS FOR DRIVEN PILES IN COHESIONLESS SOILS , 1998 .

[41]  Barry Lehane,et al.  A NEW DESIGN PROCEDURE FOR DRIVEN PILES AND ITS APPLICATION TO TWO JAPANESE CLAYS , 1998 .

[42]  Said Kenai,et al.  APPLICATION OF NEW INFORMATION TECHNOLOGY ON CONCRETE: AN OVERVIEW , 2011 .

[43]  G. Dreyfus,et al.  Réseaux de neurones - Méthodologie et applications , 2002 .

[44]  Mohamed A. Shahin,et al.  Load–settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks , 2014 .

[45]  M. Karray,et al.  Influence of particle size on the correlation between shear wave velocity and cone tip resistance , 2011 .

[46]  Jun Yang,et al.  Base Capacity of Open-Ended Steel Pipe Piles in Sand , 2012 .

[47]  David White,et al.  Field measurements of CPT and pile base resistance in sand , 2003 .

[48]  Suksun Horpibulsuk,et al.  Prediction of Undrained Shear Strength for Hard Silty Clay Nakhon Ratchasima Province , 2010 .

[49]  Shih-Tsung Hsu Axially Loaded Behavior of Driven PC Piles , 2009 .

[50]  Ali Elkamel,et al.  Model order reduction using neural network principal component analysis and generalized dimensional analysis , 2008 .

[51]  Hamid Nikraz,et al.  Predicting axial capacity of driven piles in cohesive soils using intelligent computing , 2012, Eng. Appl. Artif. Intell..

[52]  Magued Iskander,et al.  Behavior of Pipe Piles in Sand: Plugging and Pore-Water Pressure Generation During Installation and Loading , 2011 .

[53]  Krystyna Kuźniar,et al.  Neural Networks and Principal Component Analysis for Identification of Building Natural Periods , 2006 .

[54]  A. Holeyman,et al.  Design of axially loaded piles — Belgian practice , 2020 .

[55]  Mark Randolph,et al.  Centrifuge modelling of pipe piles in sand under axial loads , 1999 .

[56]  Joshua R. Omer,et al.  A New Computer Program for Pile Capacity Prediction using CPT Data , 2006 .

[57]  F C Townsend,et al.  Side Shear Setup. I: Test Piles Driven in Florida , 2005 .

[58]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[59]  Bengt H. Fellenius,et al.  Design and Testing of Piles on a Telecommunications Project in Morocco , 2012 .

[60]  Jinchun Chai,et al.  Simple Method of Modeling PVD-Improved Subsoil , 2001 .

[61]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[62]  Kenneth Gavin,et al.  Axial resistance of CFA piles in Dublin Boulder Clay , 2008 .

[63]  Akbar A. Javadi,et al.  Lateral load bearing capacity modelling of piles in cohesive soils in undrained conditions: An intelligent evolutionary approach , 2014, Appl. Soft Comput..

[64]  Ibrahim Malik,et al.  Comparison Study of Pile Foundation Using Eurocode 7 and Working Stress Design Approach , 2013 .

[65]  Bengt H. Fellenius,et al.  Load transfer for piles in sand and the critical depth , 1993 .

[66]  D. J. P. IGOE,et al.  10 FIELD MEASUREMENTS OF PIPE PILE BASE RESISTANCE IN MEDIUM DENSE SAND , 2008 .

[67]  Mohamad H. Hussein,et al.  Pile Driveability and Bearing Capacity in High-Rebound Soils , 2006 .

[68]  Li Min Zhang,et al.  Discussion of "Termination Criteria for Jacked Pile Construction and Load Transfer in Weathered Soils" , 2006 .

[69]  N. R. McCammon,et al.  SOME LOADING TESTS ON LONG PIPE PILES , 1970 .

[70]  Malcolm D. Bolton,et al.  A comparison of jacked, driven and bored piles in sand , 2005 .

[71]  Abolfazl Eslami,et al.  Pile capacity by direct CPT and CPTu methods applied to 102 case histories , 1997 .

[72]  J. Stuart Hunter,et al.  Statistical Process Control , 1999 .

[73]  Caron Green,et al.  Non-destructive evaluation using neural networks , 1995 .

[74]  M. H. Baziar,et al.  Prediction of Uplift Pile Displacement Based on Cone Penetration Tests (CPT) , 2014, Geotechnical and Geological Engineering.

[75]  K. Johnson Load-deformation behaviour of foundations under vertical and oblique loads , 2005 .

[76]  Bengt H. Fellenius Prediction of Pile Capacity , 1989 .

[77]  Koohyar Faizi,et al.  Determination of pile failure mechanism under pullout test in loose sand , 2015 .

[78]  David White,et al.  Press-in piling: the influence of plugging on driveability , 2000 .

[79]  K G Selby Pile tests at Beech River , 1970 .

[80]  Alec Westley Skempton,et al.  Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation , 1986 .

[81]  Mourad Karray,et al.  Reply to the discussion by P.K. Robertson on "Influence of particle size on the correlation between shear wave velocity and cone tip , 2012 .

[82]  E. Clothiaux,et al.  Neural Networks and Their Applications , 1994 .

[83]  Rodrigo Salgado,et al.  Use of Pile Driving Analysis for Assessment of Axial Load Capacity of Piles , 2012 .

[84]  Mohammed Sakr,et al.  Installation and Performance Characteristics of High Capacity Helical Piles in Cohesionless Soils , 2011 .

[85]  Dan A. Brown EFFECT OF CONSTRUCTION ON AXIAL CAPACITY OF DRILLED FOUNDATIONS IN PIEDMONT SOILS , 2002 .